Tabnet efficiency for facies classification and learning feature embedding from well log data

人工智能 机器学习 计算机科学 决策树 支持向量机 随机森林 深度学习 Boosting(机器学习) 嵌入 原始数据 特征(语言学) 梯度升压 特征向量 模式识别(心理学) 数据挖掘 哲学 语言学 程序设计语言
作者
Viet Cuong Ta,Thi-Linh Hoang,Nhat Trung Doan,Van-Thang Nguyen,Ntawangaheza Jean de Dieu,Thi Thanh Thuy Pham,Nguyễn Đăng Nam
出处
期刊:Petroleum Science and Technology [Taylor & Francis]
卷期号:: 1-16 被引量:3
标识
DOI:10.1080/10916466.2023.2223623
摘要

The well log data is represented as raw tabular data with diverse and nonlinear features. This poses a challenge for feature learning by machine learning models. The recent popular decision tree-based algorithms, such as random forest (RF), extreme gradient boosting (XGB) are prominent for learning nonlinear relationships of well log data in comparison with other methods of support vector machines (SVMs) and even deep learning models. In this work, we proposed using Tabnet model for direct learning tabular data of well logs. To our knowledge, this is the first time a state-of-the-art transformer-based model of Tabnet has been utilized for this task. The efficiency of Tabnet-based feature embedding is evaluated in two tasks of rock facies classification and learning feature embedding. We prove the efficiency of Tabnet model by experimental results on two small datasets of public Kansas dataset, which has nine wells for training and two wells for testing, and our own-built dataset, which has four wells for training and one well for testing. Although training on the modest amount of well log data, the proposed Tabnet model still promotes better classification efficiency than tree-based models of RF, XGBoost, LightGBM and deep learning models of MLP, CNN-1D, and ResNet-1D. KEY POINTS:Tabnet efficiency for facies classification and learning feature embedding from well log data.A challenge to learn these raw features directly for separating classes of facies.The superiority of the Tabnet network in comparison with other ruling tree-based methods and deep learning models.Facies classification and learning feature embeddings for categorical variables of well logs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燊yy发布了新的文献求助10
刚刚
梓唯忧完成签到 ,获得积分10
刚刚
吴迪发布了新的文献求助10
1秒前
结实半邪完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
LUMOS发布了新的文献求助10
2秒前
2秒前
账号本人发布了新的文献求助20
2秒前
周易发布了新的文献求助10
3秒前
4秒前
4秒前
孤心匠发布了新的文献求助50
4秒前
1111完成签到 ,获得积分10
4秒前
万能图书馆应助德玛西亚采纳,获得10
6秒前
董晴发布了新的文献求助10
6秒前
FashionBoy应助SCH_zhu采纳,获得10
6秒前
7秒前
Owen应助远志采纳,获得10
8秒前
coolcy完成签到,获得积分10
8秒前
浮游应助哈哈哈采纳,获得10
9秒前
10秒前
小垃圾完成签到,获得积分10
11秒前
大个应助风笛采纳,获得10
11秒前
12秒前
12秒前
111one给111one的求助进行了留言
12秒前
高高雪瑶完成签到,获得积分10
13秒前
14秒前
吴迪完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
Sebastian发布了新的文献求助10
15秒前
顾矜应助最短的咒采纳,获得10
15秒前
15秒前
idiom完成签到,获得积分10
18秒前
默默发布了新的文献求助10
18秒前
18秒前
领导范儿应助账号本人采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898203
求助须知:如何正确求助?哪些是违规求助? 4179039
关于积分的说明 12973629
捐赠科研通 3942934
什么是DOI,文献DOI怎么找? 2162973
邀请新用户注册赠送积分活动 1181522
关于科研通互助平台的介绍 1086962