Tabnet efficiency for facies classification and learning feature embedding from well log data

人工智能 机器学习 计算机科学 决策树 支持向量机 随机森林 深度学习 Boosting(机器学习) 嵌入 原始数据 特征(语言学) 梯度升压 特征向量 模式识别(心理学) 数据挖掘 哲学 语言学 程序设计语言
作者
Viet Cuong Ta,Thi-Linh Hoang,Nhat Trung Doan,Van-Thang Nguyen,Ntawangaheza Jean de Dieu,Thi Thanh Thuy Pham,Nguyễn Đăng Nam
出处
期刊:Petroleum Science and Technology [Informa]
卷期号:: 1-16 被引量:3
标识
DOI:10.1080/10916466.2023.2223623
摘要

The well log data is represented as raw tabular data with diverse and nonlinear features. This poses a challenge for feature learning by machine learning models. The recent popular decision tree-based algorithms, such as random forest (RF), extreme gradient boosting (XGB) are prominent for learning nonlinear relationships of well log data in comparison with other methods of support vector machines (SVMs) and even deep learning models. In this work, we proposed using Tabnet model for direct learning tabular data of well logs. To our knowledge, this is the first time a state-of-the-art transformer-based model of Tabnet has been utilized for this task. The efficiency of Tabnet-based feature embedding is evaluated in two tasks of rock facies classification and learning feature embedding. We prove the efficiency of Tabnet model by experimental results on two small datasets of public Kansas dataset, which has nine wells for training and two wells for testing, and our own-built dataset, which has four wells for training and one well for testing. Although training on the modest amount of well log data, the proposed Tabnet model still promotes better classification efficiency than tree-based models of RF, XGBoost, LightGBM and deep learning models of MLP, CNN-1D, and ResNet-1D. KEY POINTS:Tabnet efficiency for facies classification and learning feature embedding from well log data.A challenge to learn these raw features directly for separating classes of facies.The superiority of the Tabnet network in comparison with other ruling tree-based methods and deep learning models.Facies classification and learning feature embeddings for categorical variables of well logs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
称心乐枫完成签到,获得积分10
1秒前
1秒前
22发布了新的文献求助10
1秒前
berry发布了新的文献求助10
1秒前
kingmin应助毛慢慢采纳,获得10
2秒前
完美世界应助顺利鱼采纳,获得10
3秒前
搜集达人应助招财不肥采纳,获得10
4秒前
sweetbearm应助李秋静采纳,获得10
4秒前
Michael_li完成签到,获得积分10
4秒前
whs完成签到,获得积分10
6秒前
科研通AI5应助xlj采纳,获得10
7秒前
再干一杯发布了新的文献求助10
7秒前
8秒前
满意的天完成签到 ,获得积分10
8秒前
luoshiwen完成签到,获得积分10
8秒前
落寞的觅柔完成签到,获得积分10
10秒前
11秒前
LUNWENREQUEST发布了新的文献求助10
11秒前
12秒前
13秒前
123cxj完成签到,获得积分10
16秒前
CO2发布了新的文献求助10
16秒前
summer发布了新的文献求助10
16秒前
17秒前
Xx.发布了新的文献求助10
17秒前
大大关注了科研通微信公众号
17秒前
稚祎完成签到 ,获得积分10
17秒前
17秒前
CodeCraft应助东东采纳,获得10
18秒前
19秒前
叽里咕噜完成签到 ,获得积分10
20秒前
田様应助zccc采纳,获得10
21秒前
隐形的雁完成签到,获得积分10
21秒前
追寻的秋玲完成签到,获得积分10
22秒前
李繁蕊发布了新的文献求助10
22秒前
23秒前
舒心的紫雪完成签到 ,获得积分10
24秒前
24秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808