Tabnet efficiency for facies classification and learning feature embedding from well log data

人工智能 机器学习 计算机科学 决策树 支持向量机 随机森林 深度学习 Boosting(机器学习) 嵌入 原始数据 特征(语言学) 梯度升压 特征向量 模式识别(心理学) 数据挖掘 哲学 语言学 程序设计语言
作者
Viet Cuong Ta,Thi-Linh Hoang,Nhat Trung Doan,Van-Thang Nguyen,Ntawangaheza Jean de Dieu,Thi Thanh Thuy Pham,Nguyễn Đăng Nam
出处
期刊:Petroleum Science and Technology [Informa]
卷期号:: 1-16 被引量:3
标识
DOI:10.1080/10916466.2023.2223623
摘要

The well log data is represented as raw tabular data with diverse and nonlinear features. This poses a challenge for feature learning by machine learning models. The recent popular decision tree-based algorithms, such as random forest (RF), extreme gradient boosting (XGB) are prominent for learning nonlinear relationships of well log data in comparison with other methods of support vector machines (SVMs) and even deep learning models. In this work, we proposed using Tabnet model for direct learning tabular data of well logs. To our knowledge, this is the first time a state-of-the-art transformer-based model of Tabnet has been utilized for this task. The efficiency of Tabnet-based feature embedding is evaluated in two tasks of rock facies classification and learning feature embedding. We prove the efficiency of Tabnet model by experimental results on two small datasets of public Kansas dataset, which has nine wells for training and two wells for testing, and our own-built dataset, which has four wells for training and one well for testing. Although training on the modest amount of well log data, the proposed Tabnet model still promotes better classification efficiency than tree-based models of RF, XGBoost, LightGBM and deep learning models of MLP, CNN-1D, and ResNet-1D. KEY POINTS:Tabnet efficiency for facies classification and learning feature embedding from well log data.A challenge to learn these raw features directly for separating classes of facies.The superiority of the Tabnet network in comparison with other ruling tree-based methods and deep learning models.Facies classification and learning feature embeddings for categorical variables of well logs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jkim03完成签到,获得积分10
刚刚
LCC完成签到 ,获得积分10
1秒前
1秒前
李梦琦完成签到,获得积分20
2秒前
顾矜应助落寞的亦丝采纳,获得10
2秒前
2秒前
嘻哈二代发布了新的文献求助10
3秒前
卡卡西的猫完成签到 ,获得积分10
3秒前
3秒前
木南楠a发布了新的文献求助10
4秒前
坦率耳机应助就叫小王吧采纳,获得20
4秒前
Lucas应助Leon采纳,获得10
4秒前
钢琴海豹发布了新的文献求助10
5秒前
5秒前
小二郎应助龚佳豪采纳,获得10
5秒前
6秒前
难过难摧完成签到 ,获得积分10
6秒前
mochaaoliao完成签到,获得积分10
6秒前
Ava应助看文献的高光谱采纳,获得10
6秒前
懂得珍惜完成签到,获得积分10
6秒前
小沉沉完成签到 ,获得积分10
7秒前
Liam发布了新的文献求助10
7秒前
7秒前
hellojwx发布了新的文献求助10
7秒前
稳重伊发布了新的文献求助10
8秒前
run发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
玉杰完成签到,获得积分10
9秒前
超帅的哒完成签到,获得积分20
10秒前
10秒前
yiyi完成签到,获得积分10
10秒前
无花果应助任性的恋风采纳,获得10
11秒前
佩佩发布了新的文献求助10
11秒前
轻吟发布了新的文献求助10
12秒前
Lin完成签到,获得积分10
12秒前
椰树完成签到,获得积分10
12秒前
12秒前
jsczszn发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151350
求助须知:如何正确求助?哪些是违规求助? 2802831
关于积分的说明 7850478
捐赠科研通 2460184
什么是DOI,文献DOI怎么找? 1309602
科研通“疑难数据库(出版商)”最低求助积分说明 628992
版权声明 601760