Tabnet efficiency for facies classification and learning feature embedding from well log data

人工智能 机器学习 计算机科学 决策树 支持向量机 随机森林 深度学习 Boosting(机器学习) 嵌入 原始数据 特征(语言学) 梯度升压 特征向量 模式识别(心理学) 数据挖掘 哲学 语言学 程序设计语言
作者
Viet Cuong Ta,Thi-Linh Hoang,Nhat Trung Doan,Van-Thang Nguyen,Ntawangaheza Jean de Dieu,Thi Thanh Thuy Pham,Nguyễn Đăng Nam
出处
期刊:Petroleum Science and Technology [Taylor & Francis]
卷期号:: 1-16 被引量:3
标识
DOI:10.1080/10916466.2023.2223623
摘要

The well log data is represented as raw tabular data with diverse and nonlinear features. This poses a challenge for feature learning by machine learning models. The recent popular decision tree-based algorithms, such as random forest (RF), extreme gradient boosting (XGB) are prominent for learning nonlinear relationships of well log data in comparison with other methods of support vector machines (SVMs) and even deep learning models. In this work, we proposed using Tabnet model for direct learning tabular data of well logs. To our knowledge, this is the first time a state-of-the-art transformer-based model of Tabnet has been utilized for this task. The efficiency of Tabnet-based feature embedding is evaluated in two tasks of rock facies classification and learning feature embedding. We prove the efficiency of Tabnet model by experimental results on two small datasets of public Kansas dataset, which has nine wells for training and two wells for testing, and our own-built dataset, which has four wells for training and one well for testing. Although training on the modest amount of well log data, the proposed Tabnet model still promotes better classification efficiency than tree-based models of RF, XGBoost, LightGBM and deep learning models of MLP, CNN-1D, and ResNet-1D. KEY POINTS:Tabnet efficiency for facies classification and learning feature embedding from well log data.A challenge to learn these raw features directly for separating classes of facies.The superiority of the Tabnet network in comparison with other ruling tree-based methods and deep learning models.Facies classification and learning feature embeddings for categorical variables of well logs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liii发布了新的文献求助10
1秒前
momo发布了新的文献求助10
2秒前
赘婿应助Fengliguantou采纳,获得10
4秒前
不安的紫翠完成签到,获得积分10
6秒前
魁梧的鲂完成签到,获得积分10
7秒前
9秒前
华仔应助momo采纳,获得10
9秒前
隐形的糖豆完成签到,获得积分10
10秒前
qjq琪完成签到 ,获得积分10
10秒前
11秒前
12秒前
魁梧的鲂发布了新的文献求助10
13秒前
13秒前
14秒前
Lucas应助ysy采纳,获得10
15秒前
诚心的扬完成签到 ,获得积分10
15秒前
苗条梦玉发布了新的文献求助10
16秒前
cjdsb发布了新的文献求助10
16秒前
传奇3应助奋斗夏烟采纳,获得10
17秒前
18秒前
脑洞疼应助LW采纳,获得30
18秒前
21秒前
22秒前
妮妮完成签到,获得积分10
22秒前
24秒前
mmm发布了新的文献求助10
25秒前
ding应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
地表飞猪应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
地表飞猪应助科研通管家采纳,获得10
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
25秒前
我是老大应助科研通管家采纳,获得10
25秒前
zhjg完成签到,获得积分10
26秒前
liii完成签到,获得积分10
26秒前
27秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173