亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tabnet efficiency for facies classification and learning feature embedding from well log data

人工智能 机器学习 计算机科学 决策树 支持向量机 随机森林 深度学习 Boosting(机器学习) 嵌入 原始数据 特征(语言学) 梯度升压 特征向量 模式识别(心理学) 数据挖掘 语言学 哲学 程序设计语言
作者
Viet Cuong Ta,Thi-Linh Hoang,Nhat Trung Doan,Van-Thang Nguyen,Ntawangaheza Jean de Dieu,Thi Thanh Thuy Pham,Nguyễn Đăng Nam
出处
期刊:Petroleum Science and Technology [Taylor & Francis]
卷期号:: 1-16 被引量:3
标识
DOI:10.1080/10916466.2023.2223623
摘要

The well log data is represented as raw tabular data with diverse and nonlinear features. This poses a challenge for feature learning by machine learning models. The recent popular decision tree-based algorithms, such as random forest (RF), extreme gradient boosting (XGB) are prominent for learning nonlinear relationships of well log data in comparison with other methods of support vector machines (SVMs) and even deep learning models. In this work, we proposed using Tabnet model for direct learning tabular data of well logs. To our knowledge, this is the first time a state-of-the-art transformer-based model of Tabnet has been utilized for this task. The efficiency of Tabnet-based feature embedding is evaluated in two tasks of rock facies classification and learning feature embedding. We prove the efficiency of Tabnet model by experimental results on two small datasets of public Kansas dataset, which has nine wells for training and two wells for testing, and our own-built dataset, which has four wells for training and one well for testing. Although training on the modest amount of well log data, the proposed Tabnet model still promotes better classification efficiency than tree-based models of RF, XGBoost, LightGBM and deep learning models of MLP, CNN-1D, and ResNet-1D. KEY POINTS:Tabnet efficiency for facies classification and learning feature embedding from well log data.A challenge to learn these raw features directly for separating classes of facies.The superiority of the Tabnet network in comparison with other ruling tree-based methods and deep learning models.Facies classification and learning feature embeddings for categorical variables of well logs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
cc完成签到,获得积分20
3秒前
情怀应助尊敬的芷卉采纳,获得10
9秒前
研友_X89o6n完成签到,获得积分10
10秒前
aa121599完成签到,获得积分20
11秒前
23秒前
Owen应助科研通管家采纳,获得10
24秒前
朴素绿蝶发布了新的文献求助10
29秒前
痴痴的噜完成签到,获得积分10
32秒前
江姜酱先生完成签到,获得积分10
41秒前
搞科研的小李同学完成签到 ,获得积分10
47秒前
科研通AI6应助朴素绿蝶采纳,获得10
48秒前
可爱的函函应助hulahula采纳,获得10
49秒前
fabius0351完成签到 ,获得积分10
53秒前
李健应助阿米尔盼盼采纳,获得10
1分钟前
1分钟前
hulahula发布了新的文献求助10
1分钟前
1分钟前
1分钟前
长度2到发布了新的文献求助10
1分钟前
xuan发布了新的文献求助10
1分钟前
长度2到完成签到,获得积分10
1分钟前
1分钟前
xtheuv发布了新的文献求助10
1分钟前
Hello应助hulahula采纳,获得10
1分钟前
嘻嘻哈哈完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助xtheuv采纳,获得10
1分钟前
drirshad完成签到,获得积分10
1分钟前
芜湖发布了新的文献求助10
1分钟前
2分钟前
冷静新烟完成签到,获得积分10
2分钟前
芜湖完成签到,获得积分10
2分钟前
111发布了新的文献求助10
2分钟前
2分钟前
wanci应助111采纳,获得10
2分钟前
高级牛马完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220819
求助须知:如何正确求助?哪些是违规求助? 4394077
关于积分的说明 13680135
捐赠科研通 4257061
什么是DOI,文献DOI怎么找? 2335959
邀请新用户注册赠送积分活动 1333553
关于科研通互助平台的介绍 1287992