Machine Learning Enhances Flood Resilience Measurement in a Coastal Area – Case Study of Morocco

大洪水 弹性(材料科学) 计算机科学 城市化 聚类分析 环境资源管理 数据科学 数据挖掘 地理 机器学习 环境科学 生态学 生物 热力学 物理 考古
作者
N. Satour,Badreddine Benyacoub,Nabil El Moçayd,Zakariae En-Naimani,Sarfaraz K. Niazi,Nadia Kassou,Ilias Kacimi
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
被引量:10
标识
DOI:10.3808/jei.202300497
摘要

Understanding the characteristics contributing to enhancing flood resilience is a matter of urgency in managing urban areas, especially for developing countries, given the challenges imposed by climate change, social growth and urbanization. Identifying resilience metrics remains challenging, mainly because the concept is relatively new, methodological approaches are almost absent, and many types of resilience-related data are still unavailable. A number of indices for flood resilience have been introduced in the literature, typically based on clustering algorithms that allow complex behaviors to be mapped to specific levels of resilience. Consequently, the qualitative aspects of such indices are highly sensitive to the availability, quality and heterogeneity of data. Historically, this assessment has often been performed using rather simple algorithms such as Principal Components Analysis (PCA). Whilst they allow reliable resilience metrics in some areas, their use in a complex urban system such as the northern coastal area in Morocco is arguable. In the present study, we introduce an advanced Machine Learning (ML) method, namely the Self-Organizing Map (SOM), to build a Flood Resilience Index (FRI). Compared to classical methodologies, this present technique allows an improved assimilation of the complex relationship between data representing the social, economic and physical status of the area and resilience level. The success of this approach is mainly due to the ability of SOM to deal with complex, heterogeneous and sparse datasets. The results demonstrate great potential for such algorithms to shed light on systems that are too complex for classical techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助波波采纳,获得10
刚刚
刚刚
刚刚
九耳久知发布了新的文献求助10
1秒前
残梦发布了新的文献求助100
1秒前
cabbage008发布了新的文献求助10
2秒前
Alberto完成签到,获得积分10
3秒前
爆米花应助无情的宛儿采纳,获得10
4秒前
Limanman发布了新的文献求助10
5秒前
orixero应助翔翔超人采纳,获得10
6秒前
8秒前
科目三应助lipc采纳,获得10
9秒前
Neo完成签到,获得积分10
9秒前
脑洞疼应助正直的迎丝采纳,获得10
9秒前
鸭鸭要学习鸭完成签到,获得积分10
11秒前
so000应助Ray采纳,获得10
13秒前
13秒前
thchiang发布了新的文献求助10
13秒前
niko发布了新的文献求助10
14秒前
xjl发布了新的文献求助10
19秒前
20秒前
mishen完成签到,获得积分10
20秒前
22秒前
23秒前
nhjiebio发布了新的文献求助10
23秒前
隐形曼青应助trayheep采纳,获得10
24秒前
科研小垃圾完成签到,获得积分10
24秒前
mishen发布了新的文献求助10
25秒前
JamesPei应助丢丢采纳,获得10
25秒前
26秒前
27秒前
27秒前
上善若水完成签到 ,获得积分10
28秒前
晓晓来了发布了新的文献求助10
30秒前
30秒前
耍酷的棉花糖完成签到,获得积分10
31秒前
huoo完成签到 ,获得积分10
31秒前
852应助今天真暖采纳,获得10
32秒前
34秒前
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455233
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021628
捐赠科研通 2739152
什么是DOI,文献DOI怎么找? 1502472
科研通“疑难数据库(出版商)”最低求助积分说明 694544
邀请新用户注册赠送积分活动 693320