Biobased Copolymers via Cationic Ring-Opening Copolymerization of Levoglucosan Derivatives and ε-Caprolactone

共聚物 左旋葡糖 阳离子聚合 单体 聚合物 材料科学 高分子化学 有机化学 化学工程 化学 气溶胶 生物质燃烧 工程类
作者
Mayuri K. Porwal,Christopher J. Ellison,Theresa M. Reineke
出处
期刊:ACS Macro Letters [American Chemical Society]
卷期号:12 (7): 935-942 被引量:6
标识
DOI:10.1021/acsmacrolett.3c00251
摘要

Simultaneous ring-opening copolymerization is a powerful strategy for the synthesis of highly functional copolymers from different types of cyclic monomers. Although copolymers are essential to the plastics industry, environmental concerns associated with current fossil-fuel-based synthetic polymers have led to an increasing interest in the use of renewable feedstock for polymer synthesis. Herein, we report a scalable synthetic platform to afford unique polysaccharides with different pendant functional groups from biomass-derived levoglucosan and ε-caprolactone via cationic ring-opening copolymerization (cROCOP). Biocompatible and recyclable bismuth triflate was identified as the optimal catalyst for cROCOP of levoglucosan. Copolymers from tribenzyl levoglucosan and ε-caprolactone, as well as from tribenzyl and triallyl levoglucosan, were successfully synthesized. The tribenzyl levoglucosan monomer composition ranged from 16% to 64% in the copolymers with ε-caprolactone and 22% to 79% in the copolymers with triallyl levoglucosan. The allylic levoglucosan copolymer can be utilized as a renewably derived scaffold to modify copolymer properties and create other polymer architectures via postpolymerization modification. Monomer reactivity ratios were determined to investigate the copolymer microstructure, indicating that levoglucosan-based copolymers have a gradient architecture. Additionally, we demonstrated that the copolymer glass transition temperature (Tg, ranging from -44.3 to 33.8 °C), thermal stability, and crystallization behavior could be tuned based on the copolymer composition. Overall, this work underscores the utility of levoglucosan as a bioderived feedstock for the development of functional sugar-based copolymers with applications ranging from sustainable materials to biomaterials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
8R60d8应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得30
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
2秒前
fifteen应助科研通管家采纳,获得10
2秒前
星光完成签到,获得积分10
14秒前
祁郁郁发布了新的文献求助10
16秒前
19秒前
青出于蓝蔡完成签到,获得积分10
20秒前
jjx1005完成签到 ,获得积分10
21秒前
优美的冰巧完成签到 ,获得积分10
21秒前
lurun完成签到,获得积分10
22秒前
天天快乐应助星星草采纳,获得10
22秒前
24秒前
24秒前
棋棋233发布了新的文献求助30
24秒前
SciGPT应助知性的幻巧采纳,获得10
24秒前
Yziii应助大意的凝芙采纳,获得20
24秒前
SCI1区完成签到 ,获得积分10
25秒前
melon完成签到,获得积分10
27秒前
丘比特应助laola采纳,获得10
27秒前
thisky完成签到,获得积分10
27秒前
单身的钧完成签到,获得积分10
28秒前
领导范儿应助捕风的栗子采纳,获得10
28秒前
bsgmsf应助史娣采纳,获得30
29秒前
melon发布了新的文献求助10
30秒前
困敦发布了新的文献求助10
30秒前
顾台发布了新的文献求助10
31秒前
棋棋233完成签到,获得积分10
31秒前
Tina完成签到 ,获得积分10
32秒前
32秒前
Singularity应助祁郁郁采纳,获得10
32秒前
可爱的函函应助虞雅柏采纳,获得10
33秒前
Chenzhs发布了新的文献求助10
33秒前
36秒前
草原狼发布了新的文献求助10
37秒前
天天快乐应助laola采纳,获得10
37秒前
李健的小迷弟应助wycai采纳,获得10
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247643
求助须知:如何正确求助?哪些是违规求助? 2890926
关于积分的说明 8265341
捐赠科研通 2559198
什么是DOI,文献DOI怎么找? 1387913
科研通“疑难数据库(出版商)”最低求助积分说明 650670
邀请新用户注册赠送积分活动 627495