SHISRCNet: Super-resolution And Classification Network For Low-resolution Breast Cancer Histopathology Image

人工智能 放大倍数 模式识别(心理学) 分辨率(逻辑) 计算机科学 计算机视觉 扫描仪 图像分辨率 比例(比率) 图像(数学) 低分辨率 高分辨率 物理 遥感 地质学 量子力学
作者
Luyuan Xie,Cong Li,Zirui Wang,Xin Zhang,Boyan Chen,Qingni Shen,Zhonghai Wu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2306.14119
摘要

The rapid identification and accurate diagnosis of breast cancer, known as the killer of women, have become greatly significant for those patients. Numerous breast cancer histopathological image classification methods have been proposed. But they still suffer from two problems. (1) These methods can only hand high-resolution (HR) images. However, the low-resolution (LR) images are often collected by the digital slide scanner with limited hardware conditions. Compared with HR images, LR images often lose some key features like texture, which deeply affects the accuracy of diagnosis. (2) The existing methods have fixed receptive fields, so they can not extract and fuse multi-scale features well for images with different magnification factors. To fill these gaps, we present a \textbf{S}ingle \textbf{H}istopathological \textbf{I}mage \textbf{S}uper-\textbf{R}esolution \textbf{C}lassification network (SHISRCNet), which consists of two modules: Super-Resolution (SR) and Classification (CF) modules. SR module reconstructs LR images into SR ones. CF module extracts and fuses the multi-scale features of SR images for classification. In the training stage, we introduce HR images into the CF module to enhance SHISRCNet's performance. Finally, through the joint training of these two modules, super-resolution and classified of LR images are integrated into our model. The experimental results demonstrate that the effects of our method are close to the SOTA methods with taking HR images as inputs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
乐乐乐乐乐乐应助LQF采纳,获得10
刚刚
萤火虫完成签到,获得积分10
1秒前
初见发布了新的文献求助10
2秒前
赘婿应助手术室男神采纳,获得10
2秒前
3秒前
顾矜应助在远方采纳,获得10
3秒前
3秒前
3秒前
ll发布了新的文献求助10
3秒前
liusoojoo完成签到,获得积分10
3秒前
yl发布了新的文献求助10
3秒前
传奇3应助文刀采纳,获得10
4秒前
4秒前
轻松盼山完成签到,获得积分10
4秒前
5秒前
一川烟叶完成签到,获得积分10
5秒前
chen.发布了新的文献求助10
6秒前
朴素的山蝶完成签到 ,获得积分10
6秒前
东北三省发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
顾矜应助慢慢采纳,获得30
9秒前
10秒前
落叶无悔发布了新的文献求助10
10秒前
猕猴桃发布了新的文献求助10
10秒前
NexusExplorer应助张努力采纳,获得10
10秒前
ganchao1776发布了新的文献求助10
11秒前
11秒前
11秒前
CipherSage应助syy采纳,获得30
11秒前
颜绮发布了新的文献求助10
13秒前
chen.完成签到,获得积分10
13秒前
14秒前
呢n发布了新的文献求助10
14秒前
王灿灿发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152304
求助须知:如何正确求助?哪些是违规求助? 2803548
关于积分的说明 7854456
捐赠科研通 2461123
什么是DOI,文献DOI怎么找? 1310174
科研通“疑难数据库(出版商)”最低求助积分说明 629138
版权声明 601765