重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

The causality analysis of incipient fault in industrial processes using dynamic data stream transfer entropy

传递熵 计算机科学 数据挖掘 断层(地质) 因果关系(物理学) 数据流 故障检测与隔离 人工智能 最大熵原理 物理 量子力学 电信 执行机构 地震学 地质学
作者
Chu Qi,Yilin Shi,Jince Li,Hongguang Li
出处
期刊:Journal of Process Control [Elsevier]
卷期号:128: 103022-103022 被引量:6
标识
DOI:10.1016/j.jprocont.2023.103022
摘要

The propagation of the developing incipient fault embeds potential risks to the safety management of industrial processes. The transfer entropy (TE) based causality analysis method is an effective solution for early detection and timely intervention of fault propagation. However, the slow-varying incipient fault could not be analyzed timely since the conventional TE is restricted by the limited data processing capacity and fixed data selection mode. For real-time causality analysis of developing industrial fault, we proposed the dynamic data stream transfer entropy (DDSTE) algorithm and presented the DDSTE-based causality analysis method in this paper. Firstly, the conventional static data model is replaced by dynamic data stream model, which could be updated and expanded with continues import of new data and would not be restricted by the limited storage capacity. Secondly, concerning the varying timing feature of incipient fault, the adaptive data sampling window is designed to match with incipient fault evolution stages. Thirdly, the long-lasting fault sequence is coarse-grained to improve the calculation efficiency for on-line using. Compared to conventional methods, DDSTE-based causality analysis outperforms in rapid tracking of incipient fault propagation and accurate estimation of fault location. The data collected from a real coal gasification process is used to verify the reliability and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经寄文发布了新的文献求助10
1秒前
1秒前
邓统浩发布了新的文献求助10
1秒前
迷路的谷南关注了科研通微信公众号
1秒前
南边的海发布了新的文献求助10
1秒前
醉熏的老鼠完成签到,获得积分10
2秒前
Refuel发布了新的文献求助10
2秒前
方可发布了新的文献求助10
2秒前
可耐的芙蓉完成签到,获得积分10
2秒前
2秒前
Louie发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
戴胜完成签到,获得积分20
3秒前
3秒前
3秒前
4秒前
4秒前
万能图书馆应助ylf采纳,获得10
5秒前
5秒前
科研通AI6应助吉吉采纳,获得10
5秒前
复杂的无敌完成签到,获得积分10
5秒前
夕夕完成签到,获得积分10
6秒前
黄晓发布了新的文献求助10
6秒前
xian完成签到,获得积分20
6秒前
6秒前
全都卉完成签到,获得积分10
6秒前
小熊完成签到,获得积分10
7秒前
7秒前
聪慧凡雁发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
黎黎发布了新的文献求助10
8秒前
zzf发布了新的文献求助30
8秒前
8秒前
邓统浩完成签到,获得积分10
8秒前
RR完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567