材料科学
热导率
液态金属
小型化
纳米技术
数码产品
热稳定性
铜
工程物理
化学工程
复合材料
电气工程
冶金
工程类
作者
Chaojun Zhang,Yang Tang,Tianyu Guo,Yizhou Sang,Li Ding,Xiaoling Wang,Orlando J. Rojas,Junling Guo
出处
期刊:InfoMat
[Wiley]
日期:2023-07-09
卷期号:6 (1)
被引量:9
摘要
Abstract The exponentially increasing heat generation in electronic devices, induced by high power density and miniaturization, has become a dominant issue that affects carbon footprint, cost, performance, reliability, and lifespan. Liquid metals (LMs) with high thermal conductivity are promising candidates for effective thermal management yet are facing pump‐out and surface‐spreading issues. Confinement in the form of metallic particles can address these problems, but apparent alloying processes elevate the LM melting point, leading to severely deteriorated stability. Here, we propose a facile and sustainable approach to address these challenges by using a biogenic supramolecular network as an effective diffusion barrier at copper particle‐LM (EGaIn/Cu@TA) interfaces to achieve superior thermal conduction. The supramolecular network promotes LM stability by reducing unfavorable alloying and fluidity transition. The EGaIn/Cu@TA exhibits a record‐high metallic‐mediated thermal conductivity (66.1 W m −1 K −1 ) and fluidic stability. Moreover, mechanistic studies suggest the enhanced heat flow path after the incorporation of copper particles, generating heat dissipation suitable for computer central processing units, exceeding that of commercial silicone. Our results highlight the prospects of renewable macromolecules isolated from biomass for the rational design of nanointerfaces based on metallic particles and LM, paving a new and sustainable avenue for high‐performance thermal management. image
科研通智能强力驱动
Strongly Powered by AbleSci AI