Cucumber disease recognition with small samples using image-text-label-based multi-modal language model

计算机科学 人工智能 情态动词 模态(人机交互) 模式识别(心理学) 一般化 机器学习 样品(材料) 图像(数学) 比例(比率) 自然语言处理 数学 化学 高分子化学 数学分析 物理 色谱法 量子力学
作者
Yiyi Cao,Lei Chen,Yuan Yuan,Guangling Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 107993-107993 被引量:18
标识
DOI:10.1016/j.compag.2023.107993
摘要

Few-shot learning methods only need a small size of samples to train a good model. Moreover, most of these methods consider a single modality, ignoring the correlation between multi-modal data. Therefore, using multi-modal methods to solve the small-sample-size problem has become the development trend of artificial intelligence. In recent years, a multi-model method called Vision-Language Pre-training (VLP) has emerged. The semantic relation between multiple modalities can be learned through pre-training, thus obtaining better performance on downstream tasks. Accordingly, this paper took cucumber disease recognition with small samples as an example and proposed a recognition method of a multi-modal language model based on image-text-label information. First, image-text multi-modal contrastive learning, image self-supervised contrastive learning, and label information were combined to measure the distance of samples in the common image-text-label space. Second, the classification methods and optimization of large-scale vision-language pre-training on small sample cucumber datasets were studied. The proposed model achieved a recognition accuracy rate of 94.84% on a small multi-modal cucumber disease dataset. Finally, some experiments on the public dataset demonstrated that our method has good generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸的小丸子完成签到,获得积分20
1秒前
醉熏的伊发布了新的文献求助20
1秒前
2秒前
lyj发布了新的文献求助10
3秒前
4秒前
5秒前
prosperp应助mcnt采纳,获得30
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
Lucas应助wulala采纳,获得10
6秒前
Elijah完成签到 ,获得积分10
7秒前
tompo发布了新的文献求助30
7秒前
丘比特应助Rafayel采纳,获得10
7秒前
丘比特应助飘逸的小丸子采纳,获得10
8秒前
哎哟很烦发布了新的文献求助10
8秒前
小鱼完成签到,获得积分10
8秒前
科研通AI5应助pka采纳,获得10
9秒前
天明发布了新的文献求助30
10秒前
蓝色教室发布了新的文献求助10
10秒前
10秒前
10秒前
lyj完成签到,获得积分10
11秒前
四福祥完成签到,获得积分10
12秒前
丘比特应助kai采纳,获得30
13秒前
wanci应助沿途一天采纳,获得10
13秒前
14秒前
14秒前
wos完成签到,获得积分10
14秒前
SciGPT应助xh采纳,获得10
15秒前
16秒前
16秒前
16秒前
隐形曼青应助一二一采纳,获得10
17秒前
大模型应助red采纳,获得10
17秒前
东风完成签到,获得积分10
18秒前
fzf完成签到,获得积分10
18秒前
生动的冰岚完成签到,获得积分10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483245
求助须知:如何正确求助?哪些是违规求助? 3072633
关于积分的说明 9127379
捐赠科研通 2764270
什么是DOI,文献DOI怎么找? 1517034
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700770