亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The FeatureCloud Platform for Federated Learning in Biomedicine: Unified Approach

计算机科学 应用程序编程接口 领域(数学) 软件工程 人工智能 操作系统 数学 纯数学
作者
Julian Matschinske,Julian Späth,Mohammad Bakhtiari,Niklas Probul,Mohammad Mahdi Kazemi Majdabadi,Reza Nasirigerdeh,Reihaneh Torkzadehmahani,Anne Hartebrodt,Balazs-Attila Orban,Sándor-József Fejér,Olga Zolotareva,Supratim Das,Linda Baumbach,Josch K. Pauling,Olivera Tomašević,Béla Bihari,Marcus Bloice,Nina C. Donner,Walid Fdhila,Tobias Frisch,Anne-Christin Hauschild,Dominik Heider,Andreas Holzinger,Walter Hötzendorfer,Jan Hospes,Tim Kacprowski,Markus Kastelitz,Markus List,Rudolf Mayer,Mónika Moga,Heimo Müller,Anastasia Pustozerova,Richard Röttger,Christina C. Saak,Anna Saranti,Harald Schmidt,Christof Tschohl,Nina K. Wenke,Jan Baumbach
出处
期刊:Journal of Medical Internet Research 卷期号:25: e42621-e42621 被引量:13
标识
DOI:10.2196/42621
摘要

Background Machine learning and artificial intelligence have shown promising results in many areas and are driven by the increasing amount of available data. However, these data are often distributed across different institutions and cannot be easily shared owing to strict privacy regulations. Federated learning (FL) allows the training of distributed machine learning models without sharing sensitive data. In addition, the implementation is time-consuming and requires advanced programming skills and complex technical infrastructures. Objective Various tools and frameworks have been developed to simplify the development of FL algorithms and provide the necessary technical infrastructure. Although there are many high-quality frameworks, most focus only on a single application case or method. To our knowledge, there are no generic frameworks, meaning that the existing solutions are restricted to a particular type of algorithm or application field. Furthermore, most of these frameworks provide an application programming interface that needs programming knowledge. There is no collection of ready-to-use FL algorithms that are extendable and allow users (eg, researchers) without programming knowledge to apply FL. A central FL platform for both FL algorithm developers and users does not exist. This study aimed to address this gap and make FL available to everyone by developing FeatureCloud, an all-in-one platform for FL in biomedicine and beyond. Methods The FeatureCloud platform consists of 3 main components: a global frontend, a global backend, and a local controller. Our platform uses a Docker to separate the local acting components of the platform from the sensitive data systems. We evaluated our platform using 4 different algorithms on 5 data sets for both accuracy and runtime. Results FeatureCloud removes the complexity of distributed systems for developers and end users by providing a comprehensive platform for executing multi-institutional FL analyses and implementing FL algorithms. Through its integrated artificial intelligence store, federated algorithms can easily be published and reused by the community. To secure sensitive raw data, FeatureCloud supports privacy-enhancing technologies to secure the shared local models and assures high standards in data privacy to comply with the strict General Data Protection Regulation. Our evaluation shows that applications developed in FeatureCloud can produce highly similar results compared with centralized approaches and scale well for an increasing number of participating sites. Conclusions FeatureCloud provides a ready-to-use platform that integrates the development and execution of FL algorithms while reducing the complexity to a minimum and removing the hurdles of federated infrastructure. Thus, we believe that it has the potential to greatly increase the accessibility of privacy-preserving and distributed data analyses in biomedicine and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tuanheqi应助科研通管家采纳,获得50
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
8秒前
Menand完成签到,获得积分10
19秒前
19秒前
喜悦的鬼神完成签到 ,获得积分10
41秒前
44秒前
46秒前
50秒前
54秒前
赘婿应助研友_ZAyNjZ采纳,获得10
1分钟前
1分钟前
风中的博发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
风中的博完成签到,获得积分10
1分钟前
逗小豆完成签到 ,获得积分10
1分钟前
紧张的海露完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
catherine发布了新的文献求助10
1分钟前
研友_ZAyNjZ发布了新的文献求助10
1分钟前
樱木花道发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
嘉心糖应助寒冷的觅露采纳,获得30
2分钟前
2分钟前
光亮的听南完成签到 ,获得积分10
2分钟前
寒冷的觅露完成签到,获得积分20
2分钟前
李志全完成签到 ,获得积分10
2分钟前
君倾侧完成签到,获得积分10
2分钟前
Leofar完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311055
求助须知:如何正确求助?哪些是违规求助? 2943900
关于积分的说明 8516683
捐赠科研通 2619240
什么是DOI,文献DOI怎么找? 1432141
科研通“疑难数据库(出版商)”最低求助积分说明 664519
邀请新用户注册赠送积分活动 649810