Production quality prediction of multistage manufacturing systems using multi-task joint deep learning

计算机科学 质量(理念) 任务(项目管理) 人工智能 反向传播 多任务学习 人工神经网络 机器学习 工程类 认识论 哲学 系统工程
作者
Pei Wang,Hai Qu,Qianle Zhang,Xun Xu,Sheng Yang
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:70: 48-68 被引量:24
标识
DOI:10.1016/j.jmsy.2023.07.002
摘要

A multistage manufacturing system with multiple manufacturing stages is the key and main production mode for enterprises to achieve lean production. Due to the variation propagation between stages and multiple related quality prediction tasks, it is difficult to accurately predict the quality of multistage manufacturing systems with multiple tasks. Traditional single stage and single task quality prediction methods permit the multi stages and multiple tasks separately, which ignore multi-stage effects or the quality-related relationship between multiple quality output indicators and reduce the efficiency of quality prediction. In this paper, a production quality prediction framework based on multi-task joint deep learning is proposed to simultaneously evaluate the multi-task quality of all stages in a multistage manufacturing system. To be specific, variation propagation cumulative impact between multiple manufacturing stages is innovatively expressed by designing a multi-scale convolutional neural network with control gates (MCNN-CG) to extract and propagate data features. Production quality with multi-tasks at all stages is jointly predicted by designing a multi-layer multi-gate mixture-of-experts multi-task (ML-MMoE) model with reducing multi-task predictive loss simultaneously. The soft parameter-sharing strategy and multi-gate attention strategy are separately designed to ensure information sharing while learning personalized features of tasks to improve quality prediction accuracy of each task. In addition, a loss function based on homoscedastic uncertainty and regularization is designed to automatically learn the weight between multi-stage and multi-task losses. Experiments on multistage assembly test data of an inertial navigation manufacturing system show that the proposed method performs better than traditional models. Compared to the single-stage model, the proposed multistage model has an average improvement of 8.5%, 20.0% and 23.3% in R2, MAE and RMSE respectively in the second stage. Compared with the traditional multi-stage model, the proposed model has an average improvement of 1.7%, 6.2% and 9.8% in R2, MAE and RMSE respectively in the second stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
chuling发布了新的文献求助10
2秒前
snutcc完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
哦哦完成签到,获得积分10
5秒前
寒冷毛衣发布了新的文献求助10
6秒前
YE发布了新的文献求助10
7秒前
kevin926完成签到 ,获得积分10
8秒前
刘浩完成签到,获得积分10
8秒前
迷路幻柏完成签到,获得积分10
9秒前
10秒前
bkagyin应助totoro采纳,获得10
10秒前
开朗的踏歌完成签到,获得积分10
11秒前
在水一方应助DDd采纳,获得10
11秒前
落叶解三秋完成签到,获得积分10
12秒前
12秒前
13秒前
轻松的惜芹应助徐合川采纳,获得300
13秒前
13秒前
豪子完成签到 ,获得积分10
14秒前
魏少爷发布了新的文献求助10
14秒前
赘婿应助小木安华采纳,获得10
15秒前
SYLH应助goalkeeper采纳,获得50
15秒前
15秒前
科研通AI2S应助无情的宛儿采纳,获得10
15秒前
Miller发布了新的文献求助10
16秒前
寒冷毛衣完成签到,获得积分20
17秒前
柚子完成签到,获得积分10
17秒前
LiangHu发布了新的文献求助10
18秒前
林兼昆发布了新的文献求助10
19秒前
艾小晗发布了新的文献求助10
19秒前
20秒前
姚华发布了新的文献求助10
20秒前
卢沫含关注了科研通微信公众号
20秒前
科研通AI5应助小盒采纳,获得150
20秒前
rinki01完成签到,获得积分10
22秒前
23秒前
科目三应助xx采纳,获得10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980224
求助须知:如何正确求助?哪些是违规求助? 3524191
关于积分的说明 11220260
捐赠科研通 3261653
什么是DOI,文献DOI怎么找? 1800792
邀请新用户注册赠送积分活动 879296
科研通“疑难数据库(出版商)”最低求助积分说明 807232