清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Production quality prediction of multistage manufacturing systems using multi-task joint deep learning

计算机科学 质量(理念) 任务(项目管理) 人工智能 反向传播 多任务学习 人工神经网络 机器学习 工程类 哲学 系统工程 认识论
作者
Pei Wang,Hai Qu,Qianle Zhang,Xun Xu,Sheng Yang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:70: 48-68 被引量:12
标识
DOI:10.1016/j.jmsy.2023.07.002
摘要

A multistage manufacturing system with multiple manufacturing stages is the key and main production mode for enterprises to achieve lean production. Due to the variation propagation between stages and multiple related quality prediction tasks, it is difficult to accurately predict the quality of multistage manufacturing systems with multiple tasks. Traditional single stage and single task quality prediction methods permit the multi stages and multiple tasks separately, which ignore multi-stage effects or the quality-related relationship between multiple quality output indicators and reduce the efficiency of quality prediction. In this paper, a production quality prediction framework based on multi-task joint deep learning is proposed to simultaneously evaluate the multi-task quality of all stages in a multistage manufacturing system. To be specific, variation propagation cumulative impact between multiple manufacturing stages is innovatively expressed by designing a multi-scale convolutional neural network with control gates (MCNN-CG) to extract and propagate data features. Production quality with multi-tasks at all stages is jointly predicted by designing a multi-layer multi-gate mixture-of-experts multi-task (ML-MMoE) model with reducing multi-task predictive loss simultaneously. The soft parameter-sharing strategy and multi-gate attention strategy are separately designed to ensure information sharing while learning personalized features of tasks to improve quality prediction accuracy of each task. In addition, a loss function based on homoscedastic uncertainty and regularization is designed to automatically learn the weight between multi-stage and multi-task losses. Experiments on multistage assembly test data of an inertial navigation manufacturing system show that the proposed method performs better than traditional models. Compared to the single-stage model, the proposed multistage model has an average improvement of 8.5%, 20.0% and 23.3% in R2, MAE and RMSE respectively in the second stage. Compared with the traditional multi-stage model, the proposed model has an average improvement of 1.7%, 6.2% and 9.8% in R2, MAE and RMSE respectively in the second stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚老表完成签到,获得积分10
13秒前
爆米花应助hani采纳,获得10
41秒前
有人应助科研通管家采纳,获得10
59秒前
有人应助科研通管家采纳,获得10
59秒前
有人应助科研通管家采纳,获得10
59秒前
有人应助科研通管家采纳,获得10
59秒前
有人应助科研通管家采纳,获得10
59秒前
有人应助科研通管家采纳,获得30
59秒前
有人应助科研通管家采纳,获得10
59秒前
thangxtz完成签到,获得积分10
1分钟前
李健应助zhangyimg采纳,获得10
1分钟前
云木完成签到 ,获得积分10
1分钟前
方白秋完成签到,获得积分10
1分钟前
yangquanquan完成签到,获得积分10
1分钟前
1分钟前
zhangyimg发布了新的文献求助10
1分钟前
merrylake完成签到 ,获得积分10
2分钟前
仿真小学生完成签到,获得积分10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得30
2分钟前
GCD完成签到 ,获得积分10
3分钟前
4分钟前
烨枫晨曦完成签到,获得积分10
4分钟前
feiying发布了新的文献求助10
4分钟前
4分钟前
feiying完成签到,获得积分10
5分钟前
紫熊发布了新的文献求助10
5分钟前
6分钟前
Philip发布了新的文献求助10
6分钟前
6分钟前
hani发布了新的文献求助10
6分钟前
hani完成签到,获得积分10
7分钟前
紫熊完成签到,获得积分10
7分钟前
Lucas应助杨明明采纳,获得10
8分钟前
8分钟前
丹晨发布了新的文献求助10
8分钟前
丹晨完成签到,获得积分10
8分钟前
小马甲应助丹晨采纳,获得10
8分钟前
吴端完成签到,获得积分10
8分钟前
Yvonne完成签到,获得积分20
8分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826669
捐赠科研通 2454573
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527