Production quality prediction of multistage manufacturing systems using multi-task joint deep learning

计算机科学 质量(理念) 任务(项目管理) 人工智能 反向传播 多任务学习 人工神经网络 机器学习 工程类 哲学 系统工程 认识论
作者
Pei Wang,Hai Qu,Qianle Zhang,Xun Xu,Sheng Yang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:70: 48-68 被引量:12
标识
DOI:10.1016/j.jmsy.2023.07.002
摘要

A multistage manufacturing system with multiple manufacturing stages is the key and main production mode for enterprises to achieve lean production. Due to the variation propagation between stages and multiple related quality prediction tasks, it is difficult to accurately predict the quality of multistage manufacturing systems with multiple tasks. Traditional single stage and single task quality prediction methods permit the multi stages and multiple tasks separately, which ignore multi-stage effects or the quality-related relationship between multiple quality output indicators and reduce the efficiency of quality prediction. In this paper, a production quality prediction framework based on multi-task joint deep learning is proposed to simultaneously evaluate the multi-task quality of all stages in a multistage manufacturing system. To be specific, variation propagation cumulative impact between multiple manufacturing stages is innovatively expressed by designing a multi-scale convolutional neural network with control gates (MCNN-CG) to extract and propagate data features. Production quality with multi-tasks at all stages is jointly predicted by designing a multi-layer multi-gate mixture-of-experts multi-task (ML-MMoE) model with reducing multi-task predictive loss simultaneously. The soft parameter-sharing strategy and multi-gate attention strategy are separately designed to ensure information sharing while learning personalized features of tasks to improve quality prediction accuracy of each task. In addition, a loss function based on homoscedastic uncertainty and regularization is designed to automatically learn the weight between multi-stage and multi-task losses. Experiments on multistage assembly test data of an inertial navigation manufacturing system show that the proposed method performs better than traditional models. Compared to the single-stage model, the proposed multistage model has an average improvement of 8.5%, 20.0% and 23.3% in R2, MAE and RMSE respectively in the second stage. Compared with the traditional multi-stage model, the proposed model has an average improvement of 1.7%, 6.2% and 9.8% in R2, MAE and RMSE respectively in the second stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林森发布了新的文献求助10
2秒前
2秒前
那里有颗星星完成签到,获得积分10
2秒前
丙队长完成签到,获得积分10
3秒前
酷炫蚂蚁完成签到,获得积分20
4秒前
4秒前
科研通AI5应助叶子采纳,获得10
4秒前
感激不尽完成签到,获得积分10
4秒前
wuyudelan完成签到,获得积分10
5秒前
zstyry9998完成签到,获得积分10
7秒前
RH发布了新的文献求助10
7秒前
冷傲迎梦发布了新的文献求助10
7秒前
9秒前
weiv完成签到,获得积分10
11秒前
Teslwang完成签到,获得积分10
11秒前
11秒前
11秒前
zhangzhen发布了新的文献求助10
11秒前
英姑应助彬彬采纳,获得10
12秒前
传奇3应助maomao采纳,获得10
14秒前
稀罕你发布了新的文献求助10
15秒前
研友_VZG7GZ应助毛豆爸爸采纳,获得10
15秒前
naonao完成签到,获得积分20
15秒前
摆烂的实验室打工人完成签到,获得积分10
15秒前
Jenny发布了新的文献求助50
17秒前
18秒前
hehe完成签到,获得积分20
18秒前
naonao发布了新的文献求助10
19秒前
Glufo完成签到,获得积分10
19秒前
20秒前
qqqqqq发布了新的文献求助10
21秒前
忘羡222发布了新的文献求助30
21秒前
紫菜发布了新的文献求助10
23秒前
27秒前
27秒前
独特亦旋完成签到,获得积分20
28秒前
今后应助qqqqqq采纳,获得10
29秒前
小马甲应助飞羽采纳,获得10
29秒前
星辰大海应助西内!卡Q因采纳,获得10
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824