Hybrid Feature Selection using Shapley Value and ReliefF for Medical Datasets

特征选择 计算机科学 数据挖掘 夏普里值 滤波器(信号处理) 分类器(UML) 人工智能 特征(语言学) 数据集 机器学习 模式识别(心理学) 数学 哲学 数理经济学 语言学 博弈论 计算机视觉
作者
Neesha Jothi,Sharifah Mashita Syed-Mohamed,Heshalini Rajagopal
标识
DOI:10.1109/icict54344.2022.9850833
摘要

The medical databases are composed of vast amount of data. Increment in data volume has led to a massive amount of high-dimensional medical data made available to the public on the Internet. These large amounts of medical data can be put into good use through knowledge discovery by identifying knowledge that is useful via data mining. These high-dimensional data are often associated with redundant features removal. A range of information theoretic methods have been deployed in selecting the most viable and relevant feature sets, which have led to reduction in the size of data. Nonetheless, these methods have mostly failed in identifying the significance of each feature derived from the sets of features. An exceptional feature set not only decreases computational time and cost, but also enhances classifier accuracy in classification. As such, this study proposes a feature selection technique based on filter-wrapper technique using the ReliefF-Shapley Value hybrid. The ReliefF filter method was applied in the early stage stage to determine the accuracy of a feature in discriminating among classes. Next, the reduced set of features yielded from ReliefF was passed to the wrapper-based Shapley Value. In the wrapper method, Shapley Value was employed to add weight, and later, to assess each attribute based on the assessment standards. The outcomes were assessed using UCI-derived five medical datasets. The proposed method was able to yield competitive outcomes for most datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
英俊的铭应助糟糕的铁锤采纳,获得10
刚刚
Jenny完成签到,获得积分10
1秒前
wanci应助YYL采纳,获得10
1秒前
小徐同学完成签到,获得积分20
2秒前
2秒前
正直海冬完成签到 ,获得积分10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
丘比特应助charint采纳,获得10
3秒前
4秒前
bkagyin应助庸俞鳙鱼采纳,获得10
4秒前
田様应助mdalmahadi采纳,获得200
4秒前
5秒前
7秒前
seagull发布了新的文献求助10
7秒前
孤独雪柳发布了新的文献求助10
7秒前
7秒前
8秒前
无限冬卉完成签到,获得积分20
8秒前
8秒前
8秒前
研友_VZG7GZ应助娜娜采纳,获得20
8秒前
人间大清醒完成签到,获得积分10
9秒前
bubble发布了新的文献求助10
9秒前
9秒前
10秒前
寒冷猫咪发布了新的文献求助10
10秒前
11秒前
丶惑完成签到,获得积分10
11秒前
12秒前
hui发布了新的文献求助10
12秒前
酷炫静枫发布了新的文献求助10
12秒前
啦啦啦啦啦啦啦啦6666完成签到,获得积分10
13秒前
天天完成签到 ,获得积分10
13秒前
橙啊程发布了新的文献求助10
13秒前
活力惜寒发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729907
求助须知:如何正确求助?哪些是违规求助? 5320921
关于积分的说明 15317727
捐赠科研通 4876709
什么是DOI,文献DOI怎么找? 2619565
邀请新用户注册赠送积分活动 1569026
关于科研通互助平台的介绍 1525640