清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hybrid Feature Selection using Shapley Value and ReliefF for Medical Datasets

特征选择 计算机科学 数据挖掘 夏普里值 滤波器(信号处理) 分类器(UML) 人工智能 特征(语言学) 数据集 机器学习 模式识别(心理学) 数学 哲学 数理经济学 语言学 博弈论 计算机视觉
作者
Neesha Jothi,Sharifah Mashita Syed-Mohamed,Heshalini Rajagopal
标识
DOI:10.1109/icict54344.2022.9850833
摘要

The medical databases are composed of vast amount of data. Increment in data volume has led to a massive amount of high-dimensional medical data made available to the public on the Internet. These large amounts of medical data can be put into good use through knowledge discovery by identifying knowledge that is useful via data mining. These high-dimensional data are often associated with redundant features removal. A range of information theoretic methods have been deployed in selecting the most viable and relevant feature sets, which have led to reduction in the size of data. Nonetheless, these methods have mostly failed in identifying the significance of each feature derived from the sets of features. An exceptional feature set not only decreases computational time and cost, but also enhances classifier accuracy in classification. As such, this study proposes a feature selection technique based on filter-wrapper technique using the ReliefF-Shapley Value hybrid. The ReliefF filter method was applied in the early stage stage to determine the accuracy of a feature in discriminating among classes. Next, the reduced set of features yielded from ReliefF was passed to the wrapper-based Shapley Value. In the wrapper method, Shapley Value was employed to add weight, and later, to assess each attribute based on the assessment standards. The outcomes were assessed using UCI-derived five medical datasets. The proposed method was able to yield competitive outcomes for most datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
46秒前
58秒前
1分钟前
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
方白秋完成签到,获得积分10
4分钟前
4分钟前
田様应助qdlsc采纳,获得10
4分钟前
4分钟前
4分钟前
核桃发布了新的文献求助10
5分钟前
5分钟前
qdlsc发布了新的文献求助10
5分钟前
迅速的蜡烛完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
jingjili发布了新的文献求助10
6分钟前
yufanhui应助Wei采纳,获得20
6分钟前
6分钟前
852应助樱桃味的火苗采纳,获得10
6分钟前
6分钟前
6分钟前
chcmy完成签到 ,获得积分0
6分钟前
飞翔的企鹅完成签到,获得积分10
6分钟前
7分钟前
7分钟前
清风拂山岗完成签到,获得积分10
7分钟前
Wei发布了新的文献求助10
7分钟前
7分钟前
lanxinge完成签到 ,获得积分10
7分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142