Hybrid Feature Selection using Shapley Value and ReliefF for Medical Datasets

特征选择 计算机科学 数据挖掘 夏普里值 滤波器(信号处理) 分类器(UML) 人工智能 特征(语言学) 数据集 机器学习 模式识别(心理学) 数学 语言学 哲学 数理经济学 计算机视觉 博弈论
作者
Neesha Jothi,Sharifah Mashita Syed-Mohamed,Heshalini Rajagopal
标识
DOI:10.1109/icict54344.2022.9850833
摘要

The medical databases are composed of vast amount of data. Increment in data volume has led to a massive amount of high-dimensional medical data made available to the public on the Internet. These large amounts of medical data can be put into good use through knowledge discovery by identifying knowledge that is useful via data mining. These high-dimensional data are often associated with redundant features removal. A range of information theoretic methods have been deployed in selecting the most viable and relevant feature sets, which have led to reduction in the size of data. Nonetheless, these methods have mostly failed in identifying the significance of each feature derived from the sets of features. An exceptional feature set not only decreases computational time and cost, but also enhances classifier accuracy in classification. As such, this study proposes a feature selection technique based on filter-wrapper technique using the ReliefF-Shapley Value hybrid. The ReliefF filter method was applied in the early stage stage to determine the accuracy of a feature in discriminating among classes. Next, the reduced set of features yielded from ReliefF was passed to the wrapper-based Shapley Value. In the wrapper method, Shapley Value was employed to add weight, and later, to assess each attribute based on the assessment standards. The outcomes were assessed using UCI-derived five medical datasets. The proposed method was able to yield competitive outcomes for most datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ywang发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
keyantong完成签到 ,获得积分10
6秒前
booshu完成签到,获得积分10
7秒前
jy发布了新的文献求助10
8秒前
朴斓完成签到,获得积分10
8秒前
科研通AI5应助魏伯安采纳,获得10
11秒前
哈密哈密完成签到,获得积分10
11秒前
11秒前
Ava应助浪迹天涯采纳,获得10
11秒前
12秒前
安南发布了新的文献求助10
12秒前
13秒前
healthy完成签到 ,获得积分10
13秒前
14秒前
刘大可完成签到,获得积分10
14秒前
17秒前
su发布了新的文献求助10
17秒前
rookie发布了新的文献求助10
18秒前
方勇飞发布了新的文献求助10
19秒前
郭菱香完成签到 ,获得积分20
19秒前
皮念寒完成签到,获得积分10
19秒前
顺其自然_666888完成签到,获得积分10
19秒前
20秒前
向上的小v完成签到 ,获得积分10
21秒前
21秒前
23秒前
酷酷紫蓝完成签到 ,获得积分10
23秒前
23秒前
方勇飞完成签到,获得积分10
23秒前
LYZ完成签到,获得积分10
23秒前
黄景滨完成签到 ,获得积分20
24秒前
24秒前
123456完成签到,获得积分20
24秒前
hkl1542完成签到,获得积分10
25秒前
25秒前
caohuijun发布了新的文献求助10
26秒前
杳鸢应助韦颖采纳,获得20
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824