Data Augmented Sequential Recommendation Based on Counterfactual Thinking

计算机科学 反事实思维 启发式 机器学习 推荐系统 质量(理念) 人工智能 数据挖掘 认识论 哲学
作者
Xu Chen,Zhenlei Wang,Hongteng Xu,Jingsen Zhang,Yongfeng Zhang,Wayne Xin Zhao,Ji-Rong Wen
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 9181-9194 被引量:1
标识
DOI:10.1109/tkde.2022.3222070
摘要

Sequential recommendation has recently attracted increasing attention from the industry and academic communities. While previous models have achieved remarkable successes, an important problem may still hinder their performances, that is, the sparsity of the real-world data. In this paper, we propose a novel counterfactual data augmentation framework to alleviate the problem of data sparsity. In specific, our framework contains a sampler model and an anchor model. The sampler model aims to generate high-quality user behavior sequences, while the anchor model is trained based on the original and new generated samples, and leveraged to provide the final recommendation list. To implement the sampler model, we first design four types of heuristic methods based on either random or frequency-based strategies. And then, to improve the quality of the generated sequences, we propose two learning-based samplers by discovering the decision boundaries or increasing the sample informativeness. At last, we build an RL based model to automatically determine where to edit the history behaviors and how many items should be replaced. Considering that the sampler model can be imperfect, we, at last, analyze the influence of the noisy information contained in the generated sequences on the anchor model in theory, and design a simple but effective method to better serve the anchor model. We conduct extensive experiments to demonstrate the effectiveness of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文哈密瓜完成签到,获得积分10
1秒前
1秒前
1秒前
ray发布了新的文献求助10
1秒前
XXXTTT完成签到,获得积分10
1秒前
英俊的铭应助qwer采纳,获得10
2秒前
li发布了新的文献求助10
2秒前
2秒前
Psycho完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
隐形曼青应助ran采纳,获得10
3秒前
上官若男应助内向煎蛋采纳,获得10
4秒前
Akim应助T拐拐采纳,获得10
4秒前
5秒前
aodilee应助邱穗采纳,获得10
5秒前
王大雪发布了新的文献求助30
5秒前
6秒前
朱朱发布了新的文献求助10
7秒前
ktssly发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
10秒前
10秒前
Silence完成签到,获得积分0
10秒前
11秒前
Ava应助Jayee采纳,获得10
11秒前
lucky发布了新的文献求助20
11秒前
junjun发布了新的文献求助10
12秒前
李健应助Leon采纳,获得10
12秒前
12秒前
12秒前
12秒前
KON发布了新的文献求助10
12秒前
棉花完成签到 ,获得积分10
13秒前
13秒前
内向煎蛋完成签到,获得积分20
13秒前
锐意完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728