Meta-hallucinating prototype for few-shot learning promotion

幻觉 样品(材料) 人工智能 班级(哲学) 计算机科学 公制(单位) 分歧(语言学) 一般化 理想(伦理) 机器学习 数学 语言学 色谱法 认识论 数学分析 哲学 运营管理 经济 化学
作者
Lei Zhang,Fei Zhou,Wei Wei,Yanning Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:136: 109235-109235 被引量:10
标识
DOI:10.1016/j.patcog.2022.109235
摘要

An effective way for few-shot learning (FSL) is to establish a metric space where the distance between a query and the prototype of each class is computed for classification, and the key lies on hallucinating the appropriate prototypes for each class of the given FSL task. Most existing prototypical approaches hallucinate the class-wise prototype based on the given support samples with an equal contribution assumption, i.e., each support sample contributes equally to the corresponding prototype. However, due to the limited-data regime as well as the strict assumption, the hallucinated prototypes often deviate from the ideal ones that are determined by the sample distribution of each unseen class, and thus causing poor generalization performance. To mitigate this problem, we present a prototype meta-hallucination approach which shows two aspects of advantages. On one hand, instead of directly inferring the complicated sample distribution, it meta-learns to establish a difference distribution based generative model that infers the distribution of inter-sample difference and synthesizes new labeled samples through fusing the sampled inter-sample difference and each given support sample. This empowers us to augment the support set with more content-diverse samples and is beneficial to reduce the bias in prototype hallucination. On the other hand, we argue that each support sample may contribute no-equally to the ideal prototype that it belongs to and their relations vary with class characteristics. Following this, our approach meta-learns to dynamically re-weight all support samples in prototype hallucination, which makes it flexible to locate the ideal prototype for each unseen class based on its characteristics. Experiments on four FSL benchmark datasets show that our approach can effectively improve the performance of the prototypical baseline and outperform several state-of-the-art competitors with a clear margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美满水绿发布了新的文献求助10
刚刚
刚刚
NexusExplorer应助可爱的香岚采纳,获得10
刚刚
帐个发布了新的文献求助10
1秒前
漂亮幻莲发布了新的文献求助10
1秒前
海洋发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
651应助wry采纳,获得10
4秒前
知不道发布了新的文献求助20
4秒前
4秒前
Ms完成签到,获得积分10
4秒前
Dunley发布了新的文献求助10
5秒前
121发布了新的文献求助10
6秒前
彩色愚志完成签到,获得积分10
6秒前
SCI的芷蝶发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
语冰发布了新的文献求助10
9秒前
梅痕公子发布了新的文献求助10
9秒前
10秒前
大个应助小郭采纳,获得10
11秒前
新生木木发布了新的文献求助10
11秒前
Dunley完成签到,获得积分20
11秒前
CFC12发布了新的文献求助10
12秒前
闪闪的硬币完成签到 ,获得积分10
12秒前
李健的粉丝团团长应助vgh采纳,获得10
13秒前
爆米花应助威武鸽子采纳,获得10
13秒前
稳重的安萱完成签到,获得积分10
16秒前
钊钊照照朝朝完成签到,获得积分10
16秒前
传奇3应助吱哦周采纳,获得10
17秒前
顺利一江完成签到,获得积分10
17秒前
mulidexin2021完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
19秒前
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732069
求助须知:如何正确求助?哪些是违规求助? 3276463
关于积分的说明 9997152
捐赠科研通 2991940
什么是DOI,文献DOI怎么找? 1641970
邀请新用户注册赠送积分活动 780070
科研通“疑难数据库(出版商)”最低求助积分说明 748700