Multi-step forecast of PM2.5 and PM10 concentrations using convolutional neural network integrated with spatial–temporal attention and residual learning

残余物 基线(sea) 计算机科学 人工神经网络 一般化 均方误差 卷积神经网络 理论(学习稳定性) 数据挖掘 气象学 环境科学 统计 机器学习 数学 算法 地理 海洋学 地质学 数学分析
作者
Kefei Zhang,Xiaolin Yang,Hua Cao,Jesse Van Griensven Thé,Zhongchao Tan,Hesheng Yu
出处
期刊:Environment International [Elsevier BV]
卷期号:171: 107691-107691 被引量:50
标识
DOI:10.1016/j.envint.2022.107691
摘要

Accurate and reliable forecasting of PM2.5 and PM10 concentrations is important to the public to reasonably avoid air pollution and for the governmental policy responses. However, the prediction of PM2.5 and PM10 concentrations has great uncertainty and instability because of the dynamics of atmospheric flows, making it difficult for a single model to efficiently extract the spatial–temporal dependences. This paper reports a robust forecasting system to achieve accurate multi-step ahead forecasting of PM2.5 and PM10 concentrations. First, correlation analysis is adopted to screen the spatial information on pollution and meteorology that may facilitate the prediction of concentrations in a target city. Then, a spatial–temporal attention mechanism is used to assign weights to original inputs from both space and time dimensions to enhance the essential information. Subsequently, the residual-based convolutional neural network with feature extraction capabilities is employed to model the refined inputs. Finally, five accuracy metrics and two additional statistical tests are applied to comprehensively assess the performance of the proposed forecasting system. In addition, experimental studies of three major cities in the Yangtze River Delta urban agglomeration region indicate that the forecasting system outperforms various prevalent baseline models in terms of accuracy and stability. Quantitatively, the proposed STA-ResCNN model reduces root mean square error by 5.595 %-15.247 % and 6.827 %-16.906 % for the average of 1–4 h ahead predictions in three major cities of PM2.5 and PM10, respectively, compared to baseline models. The applicability and generalization of the proposed forecasting system are further verified by the extended applications in the other 23 cities in the entire region. The results prove that the forecasting system is promising in the early warning, regional prevention, and control of air pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinn发布了新的文献求助10
1秒前
朱巴子发布了新的文献求助10
1秒前
3秒前
4秒前
Analchem发布了新的文献求助10
4秒前
5秒前
虎头怪发布了新的文献求助10
6秒前
dinghaifeng应助momo采纳,获得10
7秒前
可爱的函函应助臻灏采纳,获得10
7秒前
9秒前
今天学习了嘛完成签到,获得积分20
10秒前
zimuki发布了新的文献求助10
10秒前
10秒前
12秒前
Analchem完成签到,获得积分10
12秒前
12秒前
马林给马林的求助进行了留言
16秒前
王大可发布了新的文献求助10
17秒前
Tsjng完成签到,获得积分10
17秒前
DrW1111完成签到,获得积分10
18秒前
yznfly应助Yuanyuan采纳,获得30
19秒前
幽默的雁露完成签到,获得积分20
21秒前
21秒前
闪闪映易完成签到,获得积分10
22秒前
dingz完成签到,获得积分10
25秒前
挖机机挖完成签到,获得积分10
26秒前
27秒前
小蘑菇应助嘉诚采纳,获得30
27秒前
27秒前
29秒前
慧灰huihui完成签到,获得积分10
29秒前
可爱的函函应助zimuki采纳,获得10
29秒前
量子星尘发布了新的文献求助10
29秒前
SYLH应助心杨采纳,获得10
29秒前
老年陈皮发布了新的文献求助20
30秒前
顾矜应助Nature_Science采纳,获得10
31秒前
666关注了科研通微信公众号
32秒前
33秒前
王若琪发布了新的文献求助10
34秒前
虎头怪发布了新的文献求助30
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303