Multi-step forecast of PM2.5 and PM10 concentrations using convolutional neural network integrated with spatial–temporal attention and residual learning

残余物 基线(sea) 计算机科学 人工神经网络 一般化 均方误差 卷积神经网络 理论(学习稳定性) 数据挖掘 气象学 环境科学 统计 机器学习 数学 算法 地理 海洋学 地质学 数学分析
作者
Kefei Zhang,Xiaolin Yang,Hua Cao,Jesse Van Griensven Thé,Zhongchao Tan,Hesheng Yu
出处
期刊:Environment International [Elsevier BV]
卷期号:171: 107691-107691 被引量:50
标识
DOI:10.1016/j.envint.2022.107691
摘要

Accurate and reliable forecasting of PM2.5 and PM10 concentrations is important to the public to reasonably avoid air pollution and for the governmental policy responses. However, the prediction of PM2.5 and PM10 concentrations has great uncertainty and instability because of the dynamics of atmospheric flows, making it difficult for a single model to efficiently extract the spatial–temporal dependences. This paper reports a robust forecasting system to achieve accurate multi-step ahead forecasting of PM2.5 and PM10 concentrations. First, correlation analysis is adopted to screen the spatial information on pollution and meteorology that may facilitate the prediction of concentrations in a target city. Then, a spatial–temporal attention mechanism is used to assign weights to original inputs from both space and time dimensions to enhance the essential information. Subsequently, the residual-based convolutional neural network with feature extraction capabilities is employed to model the refined inputs. Finally, five accuracy metrics and two additional statistical tests are applied to comprehensively assess the performance of the proposed forecasting system. In addition, experimental studies of three major cities in the Yangtze River Delta urban agglomeration region indicate that the forecasting system outperforms various prevalent baseline models in terms of accuracy and stability. Quantitatively, the proposed STA-ResCNN model reduces root mean square error by 5.595 %-15.247 % and 6.827 %-16.906 % for the average of 1–4 h ahead predictions in three major cities of PM2.5 and PM10, respectively, compared to baseline models. The applicability and generalization of the proposed forecasting system are further verified by the extended applications in the other 23 cities in the entire region. The results prove that the forecasting system is promising in the early warning, regional prevention, and control of air pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助暴躁鸡叉骨采纳,获得10
刚刚
tan完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
zzh发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
豆豆发布了新的文献求助10
3秒前
3秒前
独特冬天完成签到,获得积分10
3秒前
Charon发布了新的文献求助10
3秒前
Liz完成签到 ,获得积分10
3秒前
Aminoacid完成签到,获得积分10
3秒前
4秒前
4秒前
唐老丫发布了新的文献求助10
4秒前
科研通AI5应助黄晃晃采纳,获得10
5秒前
Suniex发布了新的文献求助10
5秒前
5秒前
蛇從革完成签到,获得积分0
5秒前
6秒前
小崔发布了新的文献求助10
6秒前
小巧强炫发布了新的文献求助10
6秒前
多喝水发布了新的文献求助10
6秒前
陆千万完成签到,获得积分10
6秒前
6秒前
Dawnnn完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
yyyyds发布了新的文献求助10
8秒前
情怀应助无聊的面包采纳,获得10
8秒前
8秒前
9秒前
科研通AI5应助123采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599730
求助须知:如何正确求助?哪些是违规求助? 4010192
关于积分的说明 12415278
捐赠科研通 3689855
什么是DOI,文献DOI怎么找? 2034068
邀请新用户注册赠送积分活动 1067344
科研通“疑难数据库(出版商)”最低求助积分说明 952301