Multi-step forecast of PM2.5 and PM10 concentrations using convolutional neural network integrated with spatial–temporal attention and residual learning

残余物 基线(sea) 计算机科学 人工神经网络 一般化 均方误差 卷积神经网络 理论(学习稳定性) 数据挖掘 气象学 环境科学 统计 机器学习 数学 算法 地理 海洋学 地质学 数学分析
作者
Kefei Zhang,Xiaolin Yang,Hua Cao,Jesse Van Griensven Thé,Zhongchao Tan,Hesheng Yu
出处
期刊:Environment International [Elsevier]
卷期号:171: 107691-107691 被引量:50
标识
DOI:10.1016/j.envint.2022.107691
摘要

Accurate and reliable forecasting of PM2.5 and PM10 concentrations is important to the public to reasonably avoid air pollution and for the governmental policy responses. However, the prediction of PM2.5 and PM10 concentrations has great uncertainty and instability because of the dynamics of atmospheric flows, making it difficult for a single model to efficiently extract the spatial–temporal dependences. This paper reports a robust forecasting system to achieve accurate multi-step ahead forecasting of PM2.5 and PM10 concentrations. First, correlation analysis is adopted to screen the spatial information on pollution and meteorology that may facilitate the prediction of concentrations in a target city. Then, a spatial–temporal attention mechanism is used to assign weights to original inputs from both space and time dimensions to enhance the essential information. Subsequently, the residual-based convolutional neural network with feature extraction capabilities is employed to model the refined inputs. Finally, five accuracy metrics and two additional statistical tests are applied to comprehensively assess the performance of the proposed forecasting system. In addition, experimental studies of three major cities in the Yangtze River Delta urban agglomeration region indicate that the forecasting system outperforms various prevalent baseline models in terms of accuracy and stability. Quantitatively, the proposed STA-ResCNN model reduces root mean square error by 5.595 %-15.247 % and 6.827 %-16.906 % for the average of 1–4 h ahead predictions in three major cities of PM2.5 and PM10, respectively, compared to baseline models. The applicability and generalization of the proposed forecasting system are further verified by the extended applications in the other 23 cities in the entire region. The results prove that the forecasting system is promising in the early warning, regional prevention, and control of air pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HHHH完成签到,获得积分10
2秒前
3秒前
cc完成签到,获得积分10
3秒前
4秒前
仁爱的寻凝完成签到,获得积分10
4秒前
初空月儿发布了新的文献求助10
4秒前
儿学化学打断腿完成签到,获得积分10
6秒前
7秒前
qiuqiu完成签到,获得积分10
8秒前
8秒前
闪闪乘风发布了新的文献求助10
9秒前
斯通纳完成签到 ,获得积分10
9秒前
彭于晏应助初空月儿采纳,获得30
10秒前
贪玩心情完成签到,获得积分10
10秒前
英俊的铭应助WN采纳,获得10
10秒前
duxh123完成签到 ,获得积分10
11秒前
YUAN发布了新的文献求助10
11秒前
11秒前
SciGPT应助体贴的老太采纳,获得10
13秒前
小余同学完成签到,获得积分10
13秒前
竹筏过海应助General采纳,获得30
13秒前
14秒前
liliuuuuuuuu发布了新的文献求助10
14秒前
妮可完成签到,获得积分10
14秒前
15秒前
lele完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
妮可发布了新的文献求助10
18秒前
lyrelias完成签到,获得积分10
18秒前
852应助ebby采纳,获得10
18秒前
19秒前
19秒前
传奇猎人发布了新的文献求助10
19秒前
20秒前
石家豪完成签到,获得积分10
22秒前
23秒前
炙热秋翠发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424333
求助须知:如何正确求助?哪些是违规求助? 4538732
关于积分的说明 14163572
捐赠科研通 4455641
什么是DOI,文献DOI怎么找? 2443832
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304