Multi-step forecast of PM2.5 and PM10 concentrations using convolutional neural network integrated with spatial–temporal attention and residual learning

残余物 基线(sea) 计算机科学 人工神经网络 一般化 均方误差 卷积神经网络 理论(学习稳定性) 数据挖掘 气象学 环境科学 统计 机器学习 数学 算法 地理 海洋学 地质学 数学分析
作者
Kefei Zhang,Xiaolin Yang,Hua Cao,Jesse Thé,Zhongchao Tan,Hesheng Yu
出处
期刊:Environment International [Elsevier]
卷期号:171: 107691-107691 被引量:28
标识
DOI:10.1016/j.envint.2022.107691
摘要

Accurate and reliable forecasting of PM2.5 and PM10 concentrations is important to the public to reasonably avoid air pollution and for the governmental policy responses. However, the prediction of PM2.5 and PM10 concentrations has great uncertainty and instability because of the dynamics of atmospheric flows, making it difficult for a single model to efficiently extract the spatial–temporal dependences. This paper reports a robust forecasting system to achieve accurate multi-step ahead forecasting of PM2.5 and PM10 concentrations. First, correlation analysis is adopted to screen the spatial information on pollution and meteorology that may facilitate the prediction of concentrations in a target city. Then, a spatial–temporal attention mechanism is used to assign weights to original inputs from both space and time dimensions to enhance the essential information. Subsequently, the residual-based convolutional neural network with feature extraction capabilities is employed to model the refined inputs. Finally, five accuracy metrics and two additional statistical tests are applied to comprehensively assess the performance of the proposed forecasting system. In addition, experimental studies of three major cities in the Yangtze River Delta urban agglomeration region indicate that the forecasting system outperforms various prevalent baseline models in terms of accuracy and stability. Quantitatively, the proposed STA-ResCNN model reduces root mean square error by 5.595 %-15.247 % and 6.827 %-16.906 % for the average of 1–4 h ahead predictions in three major cities of PM2.5 and PM10, respectively, compared to baseline models. The applicability and generalization of the proposed forecasting system are further verified by the extended applications in the other 23 cities in the entire region. The results prove that the forecasting system is promising in the early warning, regional prevention, and control of air pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
苏苏完成签到 ,获得积分10
13秒前
Jiaox发布了新的文献求助10
16秒前
17秒前
轻松的孤云完成签到,获得积分10
18秒前
18秒前
大喵发布了新的文献求助10
22秒前
小赞完成签到,获得积分10
22秒前
爱你的心完成签到 ,获得积分10
26秒前
ch完成签到 ,获得积分10
27秒前
树池完成签到,获得积分10
32秒前
博慧完成签到 ,获得积分10
32秒前
求知的周完成签到,获得积分10
35秒前
夜雨清痕y完成签到,获得积分10
36秒前
微暖完成签到,获得积分0
36秒前
黄豆完成签到 ,获得积分10
36秒前
祝余完成签到 ,获得积分10
39秒前
活力菠萝完成签到 ,获得积分10
44秒前
共享精神应助科研通管家采纳,获得10
45秒前
深情安青应助科研通管家采纳,获得10
45秒前
咯咯咯发布了新的文献求助20
50秒前
xiao完成签到 ,获得积分10
52秒前
Erich完成签到 ,获得积分10
53秒前
mit完成签到 ,获得积分0
59秒前
1分钟前
想要礼物的艾斯米拉达完成签到,获得积分10
1分钟前
搞怪的流沙完成签到 ,获得积分10
1分钟前
小安完成签到 ,获得积分10
1分钟前
鞑靼完成签到 ,获得积分10
1分钟前
yy爱科研完成签到,获得积分10
1分钟前
biocreater完成签到,获得积分10
1分钟前
朔风完成签到,获得积分10
1分钟前
echo完成签到 ,获得积分10
1分钟前
qingxinhuo完成签到 ,获得积分10
1分钟前
zhangzhangzhang完成签到 ,获得积分10
1分钟前
Akim应助梓泽丘墟采纳,获得10
1分钟前
沙与沫完成签到 ,获得积分10
1分钟前
旧雨新知完成签到 ,获得积分10
1分钟前
wsl完成签到 ,获得积分10
1分钟前
fujun0095完成签到,获得积分10
1分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085477
求助须知:如何正确求助?哪些是违规求助? 2738299
关于积分的说明 7548970
捐赠科研通 2387966
什么是DOI,文献DOI怎么找? 1266264
科研通“疑难数据库(出版商)”最低求助积分说明 613371
版权声明 598584