Multi-step forecast of PM2.5 and PM10 concentrations using convolutional neural network integrated with spatial–temporal attention and residual learning

残余物 基线(sea) 计算机科学 人工神经网络 一般化 均方误差 卷积神经网络 理论(学习稳定性) 数据挖掘 气象学 环境科学 统计 机器学习 数学 算法 地理 海洋学 地质学 数学分析
作者
Kefei Zhang,Xiaolin Yang,Hua Cao,Jesse Van Griensven Thé,Zhongchao Tan,Hesheng Yu
出处
期刊:Environment International [Elsevier]
卷期号:171: 107691-107691 被引量:50
标识
DOI:10.1016/j.envint.2022.107691
摘要

Accurate and reliable forecasting of PM2.5 and PM10 concentrations is important to the public to reasonably avoid air pollution and for the governmental policy responses. However, the prediction of PM2.5 and PM10 concentrations has great uncertainty and instability because of the dynamics of atmospheric flows, making it difficult for a single model to efficiently extract the spatial–temporal dependences. This paper reports a robust forecasting system to achieve accurate multi-step ahead forecasting of PM2.5 and PM10 concentrations. First, correlation analysis is adopted to screen the spatial information on pollution and meteorology that may facilitate the prediction of concentrations in a target city. Then, a spatial–temporal attention mechanism is used to assign weights to original inputs from both space and time dimensions to enhance the essential information. Subsequently, the residual-based convolutional neural network with feature extraction capabilities is employed to model the refined inputs. Finally, five accuracy metrics and two additional statistical tests are applied to comprehensively assess the performance of the proposed forecasting system. In addition, experimental studies of three major cities in the Yangtze River Delta urban agglomeration region indicate that the forecasting system outperforms various prevalent baseline models in terms of accuracy and stability. Quantitatively, the proposed STA-ResCNN model reduces root mean square error by 5.595 %-15.247 % and 6.827 %-16.906 % for the average of 1–4 h ahead predictions in three major cities of PM2.5 and PM10, respectively, compared to baseline models. The applicability and generalization of the proposed forecasting system are further verified by the extended applications in the other 23 cities in the entire region. The results prove that the forecasting system is promising in the early warning, regional prevention, and control of air pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇芳完成签到,获得积分10
1秒前
金岁岁完成签到 ,获得积分10
1秒前
bkagyin应助chenfeng2163采纳,获得10
2秒前
Jasper应助善良班采纳,获得10
2秒前
Zero_榊啸号完成签到,获得积分10
3秒前
一梦倾城完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
故渊完成签到,获得积分10
5秒前
WJF完成签到,获得积分20
6秒前
suki完成签到 ,获得积分0
6秒前
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
chenqiumu应助科研通管家采纳,获得50
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Anhber应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
Raymond应助科研通管家采纳,获得10
7秒前
Moon应助瓜瓜采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
Moon应助瓜瓜采纳,获得10
7秒前
Owen应助科研通管家采纳,获得30
7秒前
7秒前
永野芽郁应助科研通管家采纳,获得10
7秒前
123456完成签到 ,获得积分10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得20
7秒前
changping应助科研通管家采纳,获得150
7秒前
终梦应助科研通管家采纳,获得30
7秒前
Anhber应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305347
求助须知:如何正确求助?哪些是违规求助? 4451536
关于积分的说明 13852225
捐赠科研通 4338937
什么是DOI,文献DOI怎么找? 2382253
邀请新用户注册赠送积分活动 1377338
关于科研通互助平台的介绍 1344780