亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-step forecast of PM2.5 and PM10 concentrations using convolutional neural network integrated with spatial–temporal attention and residual learning

残余物 基线(sea) 计算机科学 人工神经网络 一般化 均方误差 卷积神经网络 理论(学习稳定性) 数据挖掘 气象学 环境科学 统计 机器学习 数学 算法 地理 海洋学 地质学 数学分析
作者
Kefei Zhang,Xiaolin Yang,Hua Cao,Jesse Van Griensven Thé,Zhongchao Tan,Hesheng Yu
出处
期刊:Environment International [Elsevier]
卷期号:171: 107691-107691 被引量:50
标识
DOI:10.1016/j.envint.2022.107691
摘要

Accurate and reliable forecasting of PM2.5 and PM10 concentrations is important to the public to reasonably avoid air pollution and for the governmental policy responses. However, the prediction of PM2.5 and PM10 concentrations has great uncertainty and instability because of the dynamics of atmospheric flows, making it difficult for a single model to efficiently extract the spatial–temporal dependences. This paper reports a robust forecasting system to achieve accurate multi-step ahead forecasting of PM2.5 and PM10 concentrations. First, correlation analysis is adopted to screen the spatial information on pollution and meteorology that may facilitate the prediction of concentrations in a target city. Then, a spatial–temporal attention mechanism is used to assign weights to original inputs from both space and time dimensions to enhance the essential information. Subsequently, the residual-based convolutional neural network with feature extraction capabilities is employed to model the refined inputs. Finally, five accuracy metrics and two additional statistical tests are applied to comprehensively assess the performance of the proposed forecasting system. In addition, experimental studies of three major cities in the Yangtze River Delta urban agglomeration region indicate that the forecasting system outperforms various prevalent baseline models in terms of accuracy and stability. Quantitatively, the proposed STA-ResCNN model reduces root mean square error by 5.595 %-15.247 % and 6.827 %-16.906 % for the average of 1–4 h ahead predictions in three major cities of PM2.5 and PM10, respectively, compared to baseline models. The applicability and generalization of the proposed forecasting system are further verified by the extended applications in the other 23 cities in the entire region. The results prove that the forecasting system is promising in the early warning, regional prevention, and control of air pollution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
真实的瑾瑜完成签到 ,获得积分10
3秒前
出云天花发布了新的文献求助10
6秒前
yuan完成签到,获得积分10
12秒前
12秒前
老实芯发布了新的文献求助10
15秒前
cc完成签到 ,获得积分10
21秒前
24秒前
老实芯完成签到,获得积分10
26秒前
张喜悦发布了新的文献求助10
29秒前
35秒前
小二郎应助张喜悦采纳,获得10
39秒前
45秒前
BowieHuang应助科研通管家采纳,获得10
55秒前
BowieHuang应助科研通管家采纳,获得10
55秒前
BowieHuang应助科研通管家采纳,获得10
55秒前
NexusExplorer应助白华苍松采纳,获得10
58秒前
ShiRz完成签到,获得积分10
1分钟前
呜呼完成签到,获得积分10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
1分钟前
小郭应助迷尘ing采纳,获得20
1分钟前
张晓祁完成签到,获得积分10
2分钟前
2分钟前
2分钟前
张喜悦发布了新的文献求助10
2分钟前
搜集达人应助张喜悦采纳,获得10
2分钟前
2分钟前
yueying完成签到,获得积分10
2分钟前
Luminous发布了新的文献求助10
2分钟前
佳佳完成签到,获得积分10
2分钟前
李健应助Luminous采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
Luminous完成签到,获得积分10
2分钟前
trophozoite完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
oscar完成签到,获得积分10
3分钟前
张喜悦发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534189
求助须知:如何正确求助?哪些是违规求助? 4622286
关于积分的说明 14582328
捐赠科研通 4562448
什么是DOI,文献DOI怎么找? 2500169
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450841