Multi-step forecast of PM2.5 and PM10 concentrations using convolutional neural network integrated with spatial–temporal attention and residual learning

残余物 基线(sea) 计算机科学 人工神经网络 一般化 均方误差 卷积神经网络 理论(学习稳定性) 数据挖掘 气象学 环境科学 统计 机器学习 数学 算法 地理 海洋学 地质学 数学分析
作者
Kefei Zhang,Xiaolin Yang,Hua Cao,Jesse Thé,Zhongchao Tan,Hesheng Yu
出处
期刊:Environment International [Elsevier]
卷期号:171: 107691-107691 被引量:28
标识
DOI:10.1016/j.envint.2022.107691
摘要

Accurate and reliable forecasting of PM2.5 and PM10 concentrations is important to the public to reasonably avoid air pollution and for the governmental policy responses. However, the prediction of PM2.5 and PM10 concentrations has great uncertainty and instability because of the dynamics of atmospheric flows, making it difficult for a single model to efficiently extract the spatial–temporal dependences. This paper reports a robust forecasting system to achieve accurate multi-step ahead forecasting of PM2.5 and PM10 concentrations. First, correlation analysis is adopted to screen the spatial information on pollution and meteorology that may facilitate the prediction of concentrations in a target city. Then, a spatial–temporal attention mechanism is used to assign weights to original inputs from both space and time dimensions to enhance the essential information. Subsequently, the residual-based convolutional neural network with feature extraction capabilities is employed to model the refined inputs. Finally, five accuracy metrics and two additional statistical tests are applied to comprehensively assess the performance of the proposed forecasting system. In addition, experimental studies of three major cities in the Yangtze River Delta urban agglomeration region indicate that the forecasting system outperforms various prevalent baseline models in terms of accuracy and stability. Quantitatively, the proposed STA-ResCNN model reduces root mean square error by 5.595 %-15.247 % and 6.827 %-16.906 % for the average of 1–4 h ahead predictions in three major cities of PM2.5 and PM10, respectively, compared to baseline models. The applicability and generalization of the proposed forecasting system are further verified by the extended applications in the other 23 cities in the entire region. The results prove that the forecasting system is promising in the early warning, regional prevention, and control of air pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
银月大人发布了新的文献求助30
1秒前
JustinHarry发布了新的文献求助10
1秒前
1秒前
拟拟发布了新的文献求助30
2秒前
3秒前
搜集达人应助1179采纳,获得10
4秒前
tutoutou完成签到,获得积分10
5秒前
xiaochao发布了新的文献求助10
5秒前
Ava应助astr采纳,获得10
7秒前
跳跃鱼发布了新的文献求助20
7秒前
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
andy完成签到,获得积分10
12秒前
12秒前
桐桐应助靖123456采纳,获得10
13秒前
Jasper应助勤奋的紫山采纳,获得10
14秒前
丰知然应助拟拟采纳,获得10
14秒前
Xg发布了新的文献求助10
14秒前
zhaozaozao123完成签到 ,获得积分10
15秒前
彭苗苗发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
完美世界应助fhq大神采纳,获得20
16秒前
17秒前
cocolu应助yangderder采纳,获得10
17秒前
18秒前
洋山芋发布了新的文献求助10
18秒前
大方的长颈鹿完成签到,获得积分10
18秒前
1179发布了新的文献求助10
19秒前
19秒前
19秒前
自然的茉莉完成签到,获得积分10
19秒前
19秒前
一二发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454862
求助须知:如何正确求助?哪些是违规求助? 3050097
关于积分的说明 9020280
捐赠科研通 2738771
什么是DOI,文献DOI怎么找? 1502291
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693159