Unveiling the structural features that regulate carbapenem deacylation in KPC-2 through QM/MM and interpretable machine learning

抗性(生态学) 病菌 碳青霉烯 微生物学 计算机科学 计算生物学 生物 生态学 抗生素
作者
Chao Yin,Zilin Song,Hao Tian,Timothy Palzkill,Peng Tao
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:25 (2): 1349-1362 被引量:4
标识
DOI:10.1039/d2cp03724f
摘要

Resistance to carbapenem β-lactams presents major clinical and economical challenges for the treatment of pathogen infections. The fast hydrolysis of carbapenems by carbapenemase-producing bacterial strains enables the effective deactivation of carbapenem antibiotics. In this study, we aim to unravel the structural features that distinguish the notable deacylation activity of carbapenemases. The deacylation reactions between imipenem (IPM) and the KPC-2 class A serine-based β-lactamases (ASβLs) are modeled with combined quantum mechanical/molecular mechanical (QM/MM) minimum energy pathway (MEP) calculations and interpretable machine-learning (ML) methods. We first applied a dual-level computational protocol to achieve fast sampling of QM/MM MEPs. A tree-based ensemble ML model was employed to learn the MEP activation barriers from the conformational features of the KPC-2/IPM active site. The barrier-predicting model was then unboxed using the Shapley additive explanation (SHAP) importance attribution methods to derive mechanistic insights, which were also verified by additional QM/MM wavefunction analysis. Essentially, we show that potential hydrogen bonding interactions of the general base and the tautomerization states of the carbapenem pyrroline ring could concertedly regulate the activation barrier of KPC-2/IPM deacylation. Nonetheless, we demonstrate the efficacy of interpretable ML to assist the analysis of QM/MM simulation data for robust extraction of human-interpretable mechanistic insights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助小金采纳,获得10
刚刚
1秒前
无000发布了新的文献求助10
1秒前
VV发布了新的文献求助10
2秒前
3秒前
3秒前
丰富的寒蕾完成签到,获得积分10
5秒前
zhongu应助无000采纳,获得10
7秒前
123完成签到,获得积分20
8秒前
8秒前
dpp发布了新的文献求助10
8秒前
pluto应助感性的无敌采纳,获得10
9秒前
孙老师完成签到 ,获得积分10
9秒前
烂漫的乐曲完成签到,获得积分10
11秒前
13秒前
忐忑的井发布了新的文献求助10
13秒前
谦让涵菡完成签到 ,获得积分10
15秒前
connor发布了新的文献求助10
16秒前
dpp完成签到,获得积分20
16秒前
颠覆乾坤发布了新的文献求助30
17秒前
18秒前
18秒前
18秒前
顾矜应助科研通管家采纳,获得10
19秒前
毛豆应助青青子衿采纳,获得10
19秒前
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
ceeray23应助科研通管家采纳,获得10
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
19秒前
李健应助科研通管家采纳,获得10
19秒前
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462819
求助须知:如何正确求助?哪些是违规求助? 3056394
关于积分的说明 9051793
捐赠科研通 2746049
什么是DOI,文献DOI怎么找? 1506785
科研通“疑难数据库(出版商)”最低求助积分说明 696202
邀请新用户注册赠送积分活动 695747