催化作用
部分
材料科学
吸附
金属
Atom(片上系统)
结合能
氧气
光化学
纳米技术
化学
物理化学
原子物理学
立体化学
有机化学
物理
冶金
嵌入式系统
计算机科学
作者
Zhaoyan Luo,Xianliang Li,Tingyi Zhou,Yi Guan,Jing Luo,Lei Zhang,Xueliang Sun,Chuanxin He,Qianling Zhang,Yongliang Li,Xiangzhong Ren
出处
期刊:Small
[Wiley]
日期:2022-12-29
卷期号:19 (12)
被引量:17
标识
DOI:10.1002/smll.202205283
摘要
Single-atom catalysts based on metal-N4 moieties and embedded in a graphite matrix (defined as MNC) are promising for oxygen reduction reaction (ORR). However, the performance of MNC catalysts is still far from satisfactory due to their imperfect adsorption energy to oxygen species. Herein, single-atom FeNC is leveraged as a model system and report an adjacent Ru-N4 moiety modulation effect to optimize the catalyst's electronic configuration and ORR performance. Theoretical simulations and physical characterizations reveal that the incorporation of Ru-N4 sites as the modulator can alter the d-band electronic energy of Fe center to weaken the FeO binding affinity, thus resulting in the lower adsorption energy of ORR intermediates at Fe sites. Thanks to the synergetic effects of neighboring Fe and Ru single-atom pairs, the FeN4 /RuN4 catalyst exhibits a half-wave potential of 0.958 V and negligible activity degradation after 10 000 cycles in 0.1 m KOH. Metal-air batteries using this catalyst in the cathode side exhibit a high power density of 219.5 mW cm-2 and excellent cycling stability for over 2370 h, outperforming the state-of-the-art catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI