开尔文探针力显微镜
材料科学
纳米尺度
电荷密度
接触带电
有限元法
伏打电位
工作职能
显微镜
悬臂梁
电荷(物理)
表面电荷
扫描探针显微镜
纳米技术
原子力显微镜
摩擦电效应
光学
物理
复合材料
热力学
量子力学
图层(电子)
作者
Felix Pertl,Juan Carlos Sobarzo,Lubuna Shafeek,Tobias Cramer,Scott Waitukaitis
出处
期刊:Physical Review Materials
[American Physical Society]
日期:2022-12-29
卷期号:6 (12)
被引量:5
标识
DOI:10.1103/physrevmaterials.6.125605
摘要
Kelvin probe force microscopy (KPFM) is a powerful tool for studying contact electrification (CE) at the nanoscale, but converting KPFM voltage maps to charge density maps is nontrivial due to long-range forces and complex system geometry. Here we present a strategy using finite-element method (FEM) simulations to determine the Green's function of the KPFM probe/insulator/ground system, which allows us to quantitatively extract surface charge. Testing our approach with synthetic data, we find that accounting for the atomic force microscope (AFM) tip, cone, and cantilever is necessary to recover a known input and that existing methods lead to gross miscalculation or even the incorrect sign of the underlying charge. Applying it to experimental data, we demonstrate its capacity to extract realistic surface charge densities and fine details from contact-charged surfaces. Our method gives a straightforward recipe to convert qualitative KPFM voltage data into quantitative charge data over a range of experimental conditions, enabling quantitative CE at the nanoscale.
科研通智能强力驱动
Strongly Powered by AbleSci AI