A Practical End-to-End Inventory Management Model with Deep Learning

计算机科学 小贩 供应链 运筹学 供应链管理 过程(计算) 分析 工业工程 数据挖掘 业务 营销 操作系统 工程类
作者
Meng Qi,Yuanyuan Shi,Yongzhi Qi,Chenxin Ma,Rong Yuan,Di Wu,Zuo‐Jun Max Shen
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (2): 759-773 被引量:39
标识
DOI:10.1287/mnsc.2022.4564
摘要

We investigate a data-driven multiperiod inventory replenishment problem with uncertain demand and vendor lead time (VLT) with accessibility to a large quantity of historical data. Different from the traditional two-step predict-then-optimize (PTO) solution framework, we propose a one-step end-to-end (E2E) framework that uses deep learning models to output the suggested replenishment amount directly from input features without any intermediate step. The E2E model is trained to capture the behavior of the optimal dynamic programming solution under historical observations without any prior assumptions on the distributions of the demand and the VLT. By conducting a series of thorough numerical experiments using real data from one of the leading e-commerce companies, we demonstrate the advantages of the proposed E2E model over conventional PTO frameworks. We also conduct a field experiment with JD.com, and the results show that our new algorithm reduces holding cost, stockout cost, total inventory cost, and turnover rate substantially compared with JD’s current practice. For the supply chain management industry, our E2E model shortens the decision process and provides an automatic inventory management solution with the possibility to generalize and scale. The concept of E2E, which uses the input information directly for the ultimate goal, can also be useful in practice for other supply chain management circumstances. This paper was accepted by Hamid Nazerzadeh, big data analytics. Funding: This research was supported by the National Key Research and Development Program of China [Grant 2018YFB1700600] and National Natural Science Foundation of China [Grants 71991462 and 91746210]. Supplemental Material: The online data are available at https://doi.org/10.1287/mnsc.2022.4564 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的雨旋完成签到,获得积分10
1秒前
老北京发布了新的文献求助10
2秒前
Mik完成签到,获得积分10
2秒前
4秒前
孤舟寂发布了新的文献求助10
4秒前
5秒前
端庄的孤风完成签到 ,获得积分10
5秒前
简单的老九关注了科研通微信公众号
8秒前
9秒前
科研通AI2S应助nixx采纳,获得10
9秒前
9秒前
喜羊羊完成签到 ,获得积分10
10秒前
11秒前
haocheng发布了新的文献求助10
11秒前
11秒前
尊敬乐蕊发布了新的文献求助10
14秒前
19秒前
尊敬乐蕊完成签到,获得积分10
19秒前
不配.应助佳远采纳,获得10
19秒前
20秒前
孤舟寂完成签到,获得积分10
21秒前
土豆淀粉完成签到 ,获得积分10
22秒前
秦善斓完成签到,获得积分10
23秒前
LNULZY发布了新的文献求助30
25秒前
啦啦啦啦啦啦完成签到,获得积分0
28秒前
www完成签到 ,获得积分10
30秒前
Ava应助魁梧的雨双采纳,获得10
30秒前
31秒前
搜集达人应助自然的晓山采纳,获得30
31秒前
Always完成签到,获得积分10
34秒前
PSCs完成签到,获得积分10
34秒前
科研通AI2S应助隐形山兰采纳,获得10
35秒前
田田发布了新的文献求助10
36秒前
38秒前
40秒前
40秒前
Bethune124完成签到 ,获得积分10
41秒前
song完成签到,获得积分10
42秒前
43秒前
柯凌发布了新的文献求助10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079