A Practical End-to-End Inventory Management Model with Deep Learning

计算机科学 小贩 供应链 运筹学 供应链管理 大数据 过程(计算) 工业工程 数据挖掘 业务 营销 操作系统 工程类
作者
Meng Qi,Yuanyuan Shi,Yongzhi Qi,Chenxin Ma,Rong Yuan,Di Wu,Zuo‐Jun Max Shen
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (2): 759-773 被引量:69
标识
DOI:10.1287/mnsc.2022.4564
摘要

We investigate a data-driven multiperiod inventory replenishment problem with uncertain demand and vendor lead time (VLT) with accessibility to a large quantity of historical data. Different from the traditional two-step predict-then-optimize (PTO) solution framework, we propose a one-step end-to-end (E2E) framework that uses deep learning models to output the suggested replenishment amount directly from input features without any intermediate step. The E2E model is trained to capture the behavior of the optimal dynamic programming solution under historical observations without any prior assumptions on the distributions of the demand and the VLT. By conducting a series of thorough numerical experiments using real data from one of the leading e-commerce companies, we demonstrate the advantages of the proposed E2E model over conventional PTO frameworks. We also conduct a field experiment with JD.com, and the results show that our new algorithm reduces holding cost, stockout cost, total inventory cost, and turnover rate substantially compared with JD’s current practice. For the supply chain management industry, our E2E model shortens the decision process and provides an automatic inventory management solution with the possibility to generalize and scale. The concept of E2E, which uses the input information directly for the ultimate goal, can also be useful in practice for other supply chain management circumstances. This paper was accepted by Hamid Nazerzadeh, big data analytics. Funding: This research was supported by the National Key Research and Development Program of China [Grant 2018YFB1700600] and National Natural Science Foundation of China [Grants 71991462 and 91746210]. Supplemental Material: The online data are available at https://doi.org/10.1287/mnsc.2022.4564 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青出于蓝蔡完成签到,获得积分10
刚刚
西西弗完成签到 ,获得积分10
1秒前
1秒前
HH发布了新的文献求助10
1秒前
naomi完成签到 ,获得积分10
3秒前
6秒前
大猫发布了新的文献求助10
6秒前
7秒前
midokaori发布了新的文献求助10
7秒前
10秒前
xc发布了新的文献求助10
11秒前
叶95发布了新的文献求助20
12秒前
机灵雨完成签到 ,获得积分10
12秒前
13秒前
XiaoM完成签到,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
棉花糖吖吖吖完成签到 ,获得积分10
16秒前
xinxin666完成签到,获得积分10
17秒前
17秒前
共享精神应助优秀的枕头采纳,获得10
19秒前
一支欣母沛完成签到,获得积分10
19秒前
苦哈哈发布了新的文献求助10
21秒前
21秒前
隐形曼青应助kmo采纳,获得10
21秒前
lll完成签到 ,获得积分10
21秒前
xc完成签到,获得积分10
21秒前
凉薄少年完成签到 ,获得积分10
22秒前
北鱼发布了新的文献求助10
25秒前
25秒前
隐形幻竹发布了新的文献求助30
27秒前
李子发布了新的文献求助10
30秒前
搜集达人应助蝶衣采纳,获得10
31秒前
32秒前
33秒前
33秒前
35秒前
Foxxxy发布了新的文献求助30
36秒前
38秒前
直率的画笔完成签到,获得积分10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110134
捐赠科研通 3233745
什么是DOI,文献DOI怎么找? 1787489
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152