Identification of Tool Life Stages and Redressing Criterion for Polycrystalline Diamond Micro-Grinding Tools Using a Machine Learning Approach

刀具磨损 磨损(机械) 使用寿命 研磨 计算机科学 支持向量机 鉴定(生物学) 机器学习 材料科学 机械工程 人工智能 工程类 机械加工 植物 生物
作者
Ashwani Pratap,Karali Patra,Suhas S. Joshi
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:145 (4) 被引量:1
标识
DOI:10.1115/1.4056490
摘要

Abstract Interactions of wear debris at the tool-workpiece interface in micro-grinding are quite random which leads to considerable variability in the working life of similar tools. It is not possible to capture the effect of wear debris entrapment on process signals using the available physics-based model, which makes it difficult to identify the tool life stages. The present study highlights the wear pattern and life stages of a polycrystalline diamond tool (PCD) during micro-grinding of BK7 glass. Based on the time and frequency domain cutting force features and tool surface morphology, life of a typical PCD tool could be divided into three stages viz., abrasion stage (0–23% of total tool life), loading stage (23–77% of total tool life), and chipping stage (77–100% of total tool life). A machine learning model utilizing support vector machine (SVM) could predict the life stages of a tool with a prediction accuracy of around 80.5%, and the wear pattern of a new tool coming into service becomes more deterministic on using more datasets for model training. A new modified textured PCD tool, which provided better tool-work interaction and improved debris disposal, shows little variation in cutting force features across many similar design tools which enabled identifying the life stages with higher confidence. Prognosis of tool redressing criterion enabled timely redressing of the tool which led to refined tool surface condition, such as increased number of available chip pockets, greater protrusion height of the abrasives, and lowered roughness of the machined surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
严美娜完成签到,获得积分10
2秒前
香蕉觅云应助诚心淇采纳,获得10
3秒前
Ann发布了新的文献求助20
3秒前
FashionBoy应助SUS采纳,获得10
3秒前
我爱学习完成签到 ,获得积分10
4秒前
5秒前
5秒前
Wangdx完成签到 ,获得积分10
5秒前
oooo发布了新的文献求助10
6秒前
xuan完成签到,获得积分10
6秒前
8秒前
Kuku吃的小马完成签到,获得积分10
9秒前
10秒前
10秒前
斯文的芹菜完成签到 ,获得积分10
10秒前
11秒前
11秒前
y915840635完成签到,获得积分10
11秒前
14秒前
BowenShi发布了新的文献求助10
15秒前
Yifan2024应助Zzddslj采纳,获得10
16秒前
basepair完成签到,获得积分10
16秒前
黄嘉兴发布了新的文献求助30
16秒前
施傲天发布了新的文献求助10
16秒前
16秒前
莫三毒发布了新的文献求助10
16秒前
17秒前
18秒前
淡定完成签到,获得积分20
19秒前
zhongu应助xianyue采纳,获得10
20秒前
654发布了新的文献求助10
20秒前
frankey完成签到,获得积分20
20秒前
蓝橙发布了新的文献求助10
22秒前
23秒前
24秒前
淡定发布了新的文献求助10
24秒前
爆米花应助b3lyp采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454308
求助须知:如何正确求助?哪些是违规求助? 3049562
关于积分的说明 9017790
捐赠科研通 2738130
什么是DOI,文献DOI怎么找? 1501905
科研通“疑难数据库(出版商)”最低求助积分说明 694307
邀请新用户注册赠送积分活动 692926