A Federated Learning-Based Edge Caching Approach for Mobile Edge Computing-Enabled Intelligent Connected Vehicles

计算机科学 隐藏物 马尔可夫决策过程 强化学习 GSM演进的增强数据速率 可靠性(半导体) 边缘设备 边缘计算 过程(计算) 深度学习 移动边缘计算 方案(数学) 分布式计算 实时计算 人工智能 计算机网络 机器学习 马尔可夫过程 云计算 功率(物理) 操作系统 数学分析 物理 统计 量子力学 数学
作者
Chunlin Li,Yong Zhang,Youlong Luo
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 3360-3369 被引量:71
标识
DOI:10.1109/tits.2022.3224395
摘要

Massive map data transmission and the strict demand for the privacy of high-precision maps have brought significant challenges to the cache of high-precision maps in intelligent connected vehicles (ICV). Federal learning (FL) was introduced to reduce the pressure on the edge network and protect privacy. But the high dynamics of cars and limited resources lead to low accuracy and high training delay. We propose a joint optimization scheme of participant selection and resource allocation for federated learning. In each time slice, vehicles are determined whether to participate in training, which minimizes long-term training delay with limited energy consumption. To meet the delay and privacy requirements of high-precision map caching, we present an edge cooperative caching scheme based on federated deep reinforcement learning (F-DRL), which aims to achieve dynamic adaptive edge caching while protecting user privacy. The collaborative caching model is formulated as a Markov decision process (MDP). Dueling Deep Q Network (Dueling-DQN) is used to solve the optimal strategy, and federal learning is used for training. Enough comparative experiments to evaluate the performance of the proposed schemes. The aspects of reliability, cache hit rate, and training accuracy prove that the method effectively improves the training parameters of federated learning while meeting a high-precision map cache's delay and reliability requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mark完成签到,获得积分10
刚刚
1秒前
SUCUICUI发布了新的文献求助10
1秒前
科研通AI6应助anan采纳,获得10
2秒前
安安发布了新的文献求助10
2秒前
kk发布了新的文献求助10
2秒前
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
Stella应助科研通管家采纳,获得30
3秒前
Ava应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得20
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
Stella应助科研通管家采纳,获得30
3秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
酷酷的小鸽子完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
小青椒应助科研通管家采纳,获得10
4秒前
卷儿w完成签到,获得积分10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
KING完成签到,获得积分10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
Stella应助科研通管家采纳,获得30
5秒前
伊利丹完成签到,获得积分10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
微纳组刘同完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618857
求助须知:如何正确求助?哪些是违规求助? 4703798
关于积分的说明 14923864
捐赠科研通 4758637
什么是DOI,文献DOI怎么找? 2550264
邀请新用户注册赠送积分活动 1513097
关于科研通互助平台的介绍 1474401