A Federated Learning-Based Edge Caching Approach for Mobile Edge Computing-Enabled Intelligent Connected Vehicles

计算机科学 隐藏物 马尔可夫决策过程 强化学习 GSM演进的增强数据速率 可靠性(半导体) 边缘设备 边缘计算 过程(计算) 深度学习 移动边缘计算 方案(数学) 分布式计算 实时计算 人工智能 计算机网络 机器学习 马尔可夫过程 云计算 功率(物理) 操作系统 数学分析 物理 统计 量子力学 数学
作者
Chunlin Li,Yong Zhang,Youlong Luo
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 3360-3369 被引量:71
标识
DOI:10.1109/tits.2022.3224395
摘要

Massive map data transmission and the strict demand for the privacy of high-precision maps have brought significant challenges to the cache of high-precision maps in intelligent connected vehicles (ICV). Federal learning (FL) was introduced to reduce the pressure on the edge network and protect privacy. But the high dynamics of cars and limited resources lead to low accuracy and high training delay. We propose a joint optimization scheme of participant selection and resource allocation for federated learning. In each time slice, vehicles are determined whether to participate in training, which minimizes long-term training delay with limited energy consumption. To meet the delay and privacy requirements of high-precision map caching, we present an edge cooperative caching scheme based on federated deep reinforcement learning (F-DRL), which aims to achieve dynamic adaptive edge caching while protecting user privacy. The collaborative caching model is formulated as a Markov decision process (MDP). Dueling Deep Q Network (Dueling-DQN) is used to solve the optimal strategy, and federal learning is used for training. Enough comparative experiments to evaluate the performance of the proposed schemes. The aspects of reliability, cache hit rate, and training accuracy prove that the method effectively improves the training parameters of federated learning while meeting a high-precision map cache's delay and reliability requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋的天蓉完成签到 ,获得积分10
4秒前
个性仙人掌完成签到 ,获得积分10
7秒前
CLTTT完成签到,获得积分0
9秒前
HHW完成签到 ,获得积分10
29秒前
握瑾怀瑜完成签到 ,获得积分0
32秒前
32秒前
zizideng发布了新的文献求助10
35秒前
38秒前
nki完成签到,获得积分10
39秒前
LeoBigman完成签到 ,获得积分10
40秒前
糟糕的翅膀完成签到,获得积分10
40秒前
平凡世界完成签到 ,获得积分10
42秒前
wayne完成签到 ,获得积分10
42秒前
nki发布了新的文献求助10
43秒前
小羊完成签到 ,获得积分10
52秒前
搜集达人应助nki采纳,获得10
54秒前
sevenhill完成签到 ,获得积分10
1分钟前
zizideng完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
可靠映秋完成签到,获得积分10
1分钟前
牛马完成签到,获得积分10
1分钟前
verymiao完成签到 ,获得积分10
1分钟前
华仔应助程晗采纳,获得20
1分钟前
小木没有烦恼完成签到 ,获得积分10
2分钟前
程晗完成签到,获得积分20
2分钟前
俊逸的盛男完成签到 ,获得积分10
2分钟前
2分钟前
程晗发布了新的文献求助20
2分钟前
整齐的电源完成签到 ,获得积分10
2分钟前
吴静完成签到 ,获得积分10
2分钟前
壮观的谷冬完成签到 ,获得积分0
2分钟前
2分钟前
iNk应助悠悠采纳,获得20
2分钟前
Tina泽发布了新的文献求助10
2分钟前
Tina泽完成签到,获得积分10
3分钟前
shacodow完成签到,获得积分10
3分钟前
Lillianzhu1完成签到,获得积分10
3分钟前
ll完成签到,获得积分10
3分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
3分钟前
瞿人雄完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418533
求助须知:如何正确求助?哪些是违规求助? 4534229
关于积分的说明 14143289
捐赠科研通 4450449
什么是DOI,文献DOI怎么找? 2441258
邀请新用户注册赠送积分活动 1432973
关于科研通互助平台的介绍 1410380