Binary Aquila Optimizer for 0–1 knapsack problems

计算机科学 背包问题 连续优化 离散优化 数学优化 最优化问题 群体智能 元启发式 启发式 二进制数 算法 粒子群优化 多群优化 人工智能 数学 算术
作者
Emine Baş
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:118: 105592-105592 被引量:21
标识
DOI:10.1016/j.engappai.2022.105592
摘要

The optimization process entails determining the best values for various system characteristics in order to finish the system design at the lowest possible cost. In general, real-world applications and issues in artificial intelligence and machine learning are discrete, unconstrained, or discrete. Optimization approaches have a high success rate in tackling such situations. As a result, several sophisticated heuristic algorithms based on swarm intelligence have been presented in recent years. Various academics in the literature have worked on such algorithms and have effectively addressed many difficulties. Aquila Optimizer (AO) is one such algorithm. Aquila Optimizer (AO) is a recently suggested heuristic algorithm. It is a novel population-based optimization strategy. It was made by mimicking the natural behavior of the Aquila. It was created by imitating the behavior of the Aquila in nature in the process of catching its prey. The AO algorithm is an algorithm developed to solve continuous optimization problems in their original form. In this study, the AO structure has been updated again to solve binary optimization problems. Problems encountered in the real world do not always have continuous values. It exists in problems with discrete values. Therefore, algorithms that solve continuous problems need to be restructured to solve discrete optimization problems as well. Binary optimization problems constitute a subgroup of discrete optimization problems. In this study, a new algorithm is proposed for binary optimization problems (BAO). The most successful BAO-T algorithm was created by testing the success of BAO in eight different transfer functions. Transfer functions play an active role in converting the continuous search space to the binary search space. BAO has also been developed by adding candidate solution step crossover and mutation methods (BAO-CM). The success of the proposed BAO-T and BAO-CM algorithms has been tested on the knapsack problem, which is widely selected in binary optimization problems in the literature. Knapsack problem examples are divided into three different benchmark groups in this study. A total of sixty-three low, medium, and large scale knapsack problems were determined as test datasets. The performances of BAO-T and BAO-CM algorithms were examined in detail and the results were clearly shown with graphics. In addition, the results of BAO-T and BAO-CM algorithms have been compared with the new heuristic algorithms proposed in the literature in recent years, and their success has been proven. According to the results, BAO-CM performed better than BAO-T and can be suggested as an alternative algorithm for solving binary optimization problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
半颗柠檬发布了新的文献求助10
1秒前
粗暴的达发布了新的文献求助10
1秒前
1秒前
Mr_老旭完成签到,获得积分10
1秒前
Akari完成签到,获得积分10
2秒前
想飞的猫完成签到,获得积分10
2秒前
所所应助琪琪扬扬采纳,获得10
2秒前
north完成签到,获得积分10
3秒前
Li818完成签到,获得积分10
3秒前
刘钱美子完成签到,获得积分10
3秒前
3秒前
爆米花应助夏侯觅风采纳,获得10
4秒前
孤傲的静脉完成签到,获得积分10
4秒前
阿芙乐尔完成签到 ,获得积分10
4秒前
纵马长歌完成签到,获得积分10
4秒前
tjpuzhang完成签到 ,获得积分10
4秒前
逝水无痕完成签到,获得积分10
4秒前
uu发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
卷王完成签到,获得积分10
5秒前
Anyemzl完成签到,获得积分10
6秒前
阿玖完成签到 ,获得积分10
6秒前
6秒前
monocle发布了新的文献求助10
6秒前
tinna完成签到,获得积分10
6秒前
你好发布了新的文献求助10
7秒前
明亮紫易完成签到,获得积分10
7秒前
zh完成签到,获得积分10
7秒前
科研一坤年完成签到,获得积分10
8秒前
Liu发布了新的文献求助10
8秒前
xxl完成签到,获得积分10
8秒前
KL发布了新的文献求助10
8秒前
瑞克五代完成签到,获得积分10
9秒前
9秒前
chloe完成签到,获得积分10
9秒前
迷你的雅霜完成签到,获得积分10
9秒前
炸鸡加热完成签到,获得积分10
9秒前
浮游应助酒酿是也采纳,获得10
10秒前
TH完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977