Posture and Appearance Fusion Network for Driver Distraction Recognition

计算机科学 分散注意力 分心驾驶 人工智能 特征提取 注意力网络 人工神经网络 计算机视觉 模式识别(心理学) 生物 神经科学
作者
Hao Yu,Chong Zhao,Xing Wei,Yu Zhai,Zhe Chen,Guifan Sun,Lu Yang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 165-174 被引量:2
标识
DOI:10.1007/978-3-031-19208-1_14
摘要

Distracted driving is the act of driving while engaged in other activities, such as using a cell phone, texting, eating, or reading, which takes the driver’ attention away from the road. Nowadays, the distracted driving detection models based on deep learning can extract critical information from video data to characterize the driving behavior process. But the distraction driving method based solely on appearance features cannot essentially eliminate the noise impact of the complex environment on the model, and the distracted driving recognition method based solely on skeletal information is unable to recognize the joint action of the human body and the objects. Therefore, the development of an accurate distracted driving detection model has become challenging. In this paper, we propose a distracted driving recognition model MFD-former based on the fusion of posture and appearance. First, a feature extraction module is proposed to extract skeleton data(i.e., posture) and appearance features(i.e., descriptors), which are merged by a graph neural network. Then, the two kinds of information are input into the MFD-former encoder module, and the self-attention mechanism quickly extracts the sparse data. Finally, the classification results of distracted driving are obtained by extracting the classification labels through the MLP Head. The MFD-former model outperforms existing models. It achieved $$95.1\%$$ accuracy on the State Farm dataset and $$90.24\%$$ accuracy on the self-built Train Drivers dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
libaibai完成签到 ,获得积分10
2秒前
HR112完成签到,获得积分0
3秒前
4秒前
TrDoubleE完成签到 ,获得积分10
4秒前
脑洞疼应助淡然的夜柳采纳,获得10
7秒前
隐形曼青应助Nakacoke77采纳,获得10
8秒前
cui完成签到,获得积分10
8秒前
共享精神应助智智采纳,获得10
8秒前
8秒前
heavennew完成签到,获得积分10
8秒前
科目三应助maclogos采纳,获得10
9秒前
砍柴少年发布了新的文献求助10
10秒前
852应助songyl采纳,获得10
10秒前
10秒前
Jaden发布了新的文献求助10
11秒前
12秒前
bkagyin应助Either采纳,获得10
14秒前
桐桐应助砍柴少年采纳,获得10
17秒前
pp发布了新的文献求助10
17秒前
搜集达人应助文艺的冬卉采纳,获得10
18秒前
20秒前
诸葛藏藏完成签到 ,获得积分10
20秒前
闲听花落完成签到 ,获得积分10
22秒前
风中寻凝发布了新的文献求助20
23秒前
伶俐碧萱完成签到 ,获得积分10
23秒前
23秒前
23秒前
无辜的怜烟完成签到 ,获得积分10
24秒前
24秒前
QING完成签到 ,获得积分20
25秒前
迷人岩发布了新的文献求助10
25秒前
25秒前
田轲关注了科研通微信公众号
25秒前
典雅碧空发布了新的文献求助30
26秒前
Either发布了新的文献求助10
28秒前
28秒前
28秒前
Lost发布了新的文献求助10
29秒前
cc完成签到,获得积分20
30秒前
277完成签到 ,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030