亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Physics-Informed Neural Network-based Topology Optimization (PINNTO) framework for structural optimization

拓扑优化 拓扑(电路) 人工神经网络 网络拓扑 计算机科学 最优化问题 数学优化 工程类 数学 有限元法 人工智能 算法 结构工程 操作系统 组合数学
作者
Hyogu Jeong,Jinshuai Bai,Chanaka Batuwatta-Gamage,Charith Rathnayaka,Ying Zhou,Yuantong Gu
出处
期刊:Engineering Structures [Elsevier]
卷期号:278: 115484-115484 被引量:59
标识
DOI:10.1016/j.engstruct.2022.115484
摘要

Physics-Informed Neural Networks (PINNs) have recently attracted exponentially increasing attention in the field of computational mechanics. This paper proposes a novel topology optimization framework: Physics-Informed Neural Network-based Topology Optimization (PINNTO). Unlike existing machine-learning based topology optimization frameworks, PINNTO employs an energy-based PINN to replace Finite Element Analysis (FEA) in the conventional structural topology optimization, to numerically determine the deformation states, which is a key novelty in the proposed methodology. A supervised neural network that respects governing physical laws defined via partial differential equations is trained to develop the corresponding network without any labelled data, with the intention of solving solid mechanics problems. To assess feasibility and potential of the proposed PINNTO framework, a number of topology-optimization-related case studies have been implemented. The subsequent findings illustrate that PINNTO has the ability to attain optimized topologies with neither labelled data nor FEA. In addition, it has the capability to generate comparable designs to those produced by the current successful approaches such as Solid Isotropic Material with Penalization (SIMP). Based on the results of this study, it can also be deduced that PINNTO can acquire optimal topologies for various types of complex domains given that the boundary conditions and loading configurations are correctly imposed for the associated energy-based PINN. Consequently, the proposed PINNTO framework has demonstrated promising capabilities to solve problems under conditions when the usage of FEA is challenged (if not impossible). In summary, the proposed PINNTO framework opens up a new avenue for structural design in this ‘data-rich’ age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lorin完成签到 ,获得积分10
2秒前
Juan_He发布了新的文献求助10
6秒前
18秒前
松鼠一只发布了新的文献求助10
23秒前
wodetaiyangLLL完成签到 ,获得积分10
30秒前
社会主义接班人完成签到 ,获得积分10
36秒前
Orange应助骀荡采纳,获得10
52秒前
今后应助野生菜狗采纳,获得10
1分钟前
mirrovo完成签到 ,获得积分10
1分钟前
帅气的秘密完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
超帅无血完成签到,获得积分10
1分钟前
野生菜狗发布了新的文献求助10
1分钟前
orixero应助墨倾池采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
墨倾池发布了新的文献求助10
2分钟前
2分钟前
李洁发布了新的文献求助10
2分钟前
Akim应助Dailei采纳,获得10
2分钟前
研友_892kOL完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
Dailei发布了新的文献求助10
3分钟前
Peri发布了新的文献求助10
3分钟前
上好发布了新的文献求助10
3分钟前
3分钟前
Dailei完成签到,获得积分10
3分钟前
乐乐乐乐乐乐完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
吃书的猪完成签到,获得积分10
3分钟前
monned完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372856
求助须知:如何正确求助?哪些是违规求助? 2990391
关于积分的说明 8740961
捐赠科研通 2674069
什么是DOI,文献DOI怎么找? 1464838
科研通“疑难数据库(出版商)”最低求助积分说明 677681
邀请新用户注册赠送积分活动 669082