已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attention-enhanced sampling point cloud network (ASPCNet) for efficient 3D tunnel semantic segmentation

点云 增采样 采样(信号处理) 计算机科学 人工智能 分割 过程(计算) 特征(语言学) 数据挖掘 推论 交叉口(航空) 实时计算 计算机视觉 工程类 图像(数学) 滤波器(信号处理) 操作系统 哲学 航空航天工程 语言学
作者
Yunxiang Zhou,Ankang Ji,Limao Zhang,Xiaolong Xue
出处
期刊:Automation in Construction [Elsevier]
卷期号:146: 104667-104667 被引量:21
标识
DOI:10.1016/j.autcon.2022.104667
摘要

Laser scanning is used as a modern means to capture data from tunnels to assess their condition, but automated processing requires robust component detection and deterioration characterization. In order to segment 3D tunnel point clouds aiming at more accurate results with high time efficiency, this paper describes a point cloud technique that collects actual tunnel scenes and develops an attention-enhanced sampling point cloud network named ASPCNet. In the developed model, the feature embedding module is responsible to process the point cloud data for local features followed by the attention module for enhancing the feature extraction and learning. Additionally, the point downsampling-upsampling structure fully assists the model to strengthen the capability to process point clouds for time efficiency. In the training process, a weighted focal loss is designed to enhance the model learning by eliminating the effect of data imbalance. The developed ASPCNet is trained and then tested on a dataset collected from a cross-river metro tunnel section in China, demonstrating its efficiency and effectiveness. In comparison with different sampling ratios, state-of-the-art methods, and sampling methods, the ASPCNet with a uniform sampling rate of 2 exhibits the best performance, achieving an overall accuracy of 0.9758, a mean Intersection over Union (MIoU) of 0.8988, and an inference time of 4.1 s, demonstrating that the sampling structure involved in this research boosts the time efficiency, the developed model has superior performance, and the sampling method adopted is beneficial to strengthen the model performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助明亮兔子采纳,获得10
1秒前
夏xia完成签到 ,获得积分10
2秒前
3秒前
HUGGSY完成签到,获得积分10
4秒前
4秒前
Orange应助Auhiver采纳,获得10
5秒前
大模型应助秋秋采纳,获得10
6秒前
8秒前
8秒前
丰富的谷菱完成签到,获得积分10
9秒前
9秒前
xxPcy发布了新的文献求助10
9秒前
锦沫完成签到 ,获得积分10
10秒前
无私航空发布了新的文献求助10
10秒前
超级灰狼完成签到 ,获得积分10
11秒前
炸毛吐司完成签到,获得积分20
11秒前
英勇滑板发布了新的文献求助10
13秒前
刘萍完成签到 ,获得积分10
13秒前
13秒前
LIM发布了新的文献求助10
14秒前
16秒前
chaos完成签到 ,获得积分10
16秒前
无私航空完成签到,获得积分10
16秒前
18秒前
19秒前
明亮兔子发布了新的文献求助10
20秒前
20秒前
麻瓜发布了新的文献求助10
21秒前
隐形曼青应助xixixi采纳,获得10
21秒前
even完成签到,获得积分10
22秒前
23秒前
cherry发布了新的文献求助10
23秒前
24秒前
24秒前
kun发布了新的文献求助20
25秒前
26秒前
Jack完成签到 ,获得积分10
26秒前
xa发布了新的文献求助10
27秒前
Auhiver发布了新的文献求助10
28秒前
禾火发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723192
求助须知:如何正确求助?哪些是违规求助? 5275071
关于积分的说明 15298251
捐赠科研通 4871863
什么是DOI,文献DOI怎么找? 2616277
邀请新用户注册赠送积分活动 1566075
关于科研通互助平台的介绍 1523006