Attention-enhanced sampling point cloud network (ASPCNet) for efficient 3D tunnel semantic segmentation

点云 增采样 采样(信号处理) 计算机科学 人工智能 分割 过程(计算) 特征(语言学) 数据挖掘 推论 交叉口(航空) 实时计算 计算机视觉 工程类 图像(数学) 滤波器(信号处理) 操作系统 哲学 航空航天工程 语言学
作者
Yunxiang Zhou,Ankang Ji,Limao Zhang,Xiaolong Xue
出处
期刊:Automation in Construction [Elsevier]
卷期号:146: 104667-104667 被引量:21
标识
DOI:10.1016/j.autcon.2022.104667
摘要

Laser scanning is used as a modern means to capture data from tunnels to assess their condition, but automated processing requires robust component detection and deterioration characterization. In order to segment 3D tunnel point clouds aiming at more accurate results with high time efficiency, this paper describes a point cloud technique that collects actual tunnel scenes and develops an attention-enhanced sampling point cloud network named ASPCNet. In the developed model, the feature embedding module is responsible to process the point cloud data for local features followed by the attention module for enhancing the feature extraction and learning. Additionally, the point downsampling-upsampling structure fully assists the model to strengthen the capability to process point clouds for time efficiency. In the training process, a weighted focal loss is designed to enhance the model learning by eliminating the effect of data imbalance. The developed ASPCNet is trained and then tested on a dataset collected from a cross-river metro tunnel section in China, demonstrating its efficiency and effectiveness. In comparison with different sampling ratios, state-of-the-art methods, and sampling methods, the ASPCNet with a uniform sampling rate of 2 exhibits the best performance, achieving an overall accuracy of 0.9758, a mean Intersection over Union (MIoU) of 0.8988, and an inference time of 4.1 s, demonstrating that the sampling structure involved in this research boosts the time efficiency, the developed model has superior performance, and the sampling method adopted is beneficial to strengthen the model performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小药丸包饺子应助0994采纳,获得50
1秒前
1秒前
1秒前
1秒前
欣喜的硬币完成签到,获得积分10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
Jokerc完成签到,获得积分10
2秒前
YSY发布了新的文献求助10
2秒前
恨安完成签到,获得积分10
2秒前
2秒前
2秒前
路宝发布了新的文献求助10
2秒前
bewh完成签到,获得积分10
3秒前
3秒前
嘻嘻发布了新的文献求助10
3秒前
天才罗完成签到,获得积分10
3秒前
滕遥发布了新的文献求助150
3秒前
3秒前
Congcong给Congcong的求助进行了留言
3秒前
Ting完成签到 ,获得积分10
4秒前
4秒前
徐恺完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
Jasper应助欢呼豆芽采纳,获得10
5秒前
6秒前
所所应助善良的ltl采纳,获得10
7秒前
shenerqing发布了新的文献求助10
7秒前
小杜发布了新的文献求助10
7秒前
7秒前
xueshu发布了新的文献求助10
7秒前
风住的街完成签到,获得积分10
7秒前
难过板栗发布了新的文献求助10
7秒前
666发布了新的文献求助10
7秒前
8秒前
薇子完成签到,获得积分10
8秒前
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401