Attention-enhanced sampling point cloud network (ASPCNet) for efficient 3D tunnel semantic segmentation

点云 增采样 采样(信号处理) 计算机科学 人工智能 分割 过程(计算) 特征(语言学) 数据挖掘 推论 交叉口(航空) 实时计算 计算机视觉 工程类 图像(数学) 滤波器(信号处理) 操作系统 哲学 航空航天工程 语言学
作者
Yunxiang Zhou,Ankang Ji,Limao Zhang,Xiaolong Xue
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:146: 104667-104667 被引量:21
标识
DOI:10.1016/j.autcon.2022.104667
摘要

Laser scanning is used as a modern means to capture data from tunnels to assess their condition, but automated processing requires robust component detection and deterioration characterization. In order to segment 3D tunnel point clouds aiming at more accurate results with high time efficiency, this paper describes a point cloud technique that collects actual tunnel scenes and develops an attention-enhanced sampling point cloud network named ASPCNet. In the developed model, the feature embedding module is responsible to process the point cloud data for local features followed by the attention module for enhancing the feature extraction and learning. Additionally, the point downsampling-upsampling structure fully assists the model to strengthen the capability to process point clouds for time efficiency. In the training process, a weighted focal loss is designed to enhance the model learning by eliminating the effect of data imbalance. The developed ASPCNet is trained and then tested on a dataset collected from a cross-river metro tunnel section in China, demonstrating its efficiency and effectiveness. In comparison with different sampling ratios, state-of-the-art methods, and sampling methods, the ASPCNet with a uniform sampling rate of 2 exhibits the best performance, achieving an overall accuracy of 0.9758, a mean Intersection over Union (MIoU) of 0.8988, and an inference time of 4.1 s, demonstrating that the sampling structure involved in this research boosts the time efficiency, the developed model has superior performance, and the sampling method adopted is beneficial to strengthen the model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮虾完成签到 ,获得积分10
1秒前
2秒前
不能吃太饱完成签到 ,获得积分10
4秒前
buqi发布了新的文献求助10
5秒前
伶俐紫完成签到,获得积分10
6秒前
6秒前
7秒前
Annie发布了新的文献求助20
7秒前
二队淼队长完成签到,获得积分10
8秒前
我是老大应助清沧炽魂采纳,获得10
8秒前
彳亍宣完成签到 ,获得积分10
9秒前
缥缈的闭月完成签到,获得积分10
12秒前
buqi完成签到,获得积分10
12秒前
孔wj完成签到,获得积分10
13秒前
縤雨完成签到 ,获得积分10
13秒前
13秒前
Tao完成签到,获得积分10
18秒前
18秒前
黄景滨完成签到 ,获得积分10
19秒前
20秒前
wwrjj完成签到,获得积分10
21秒前
liu完成签到,获得积分10
21秒前
孤独听雨的猫完成签到 ,获得积分10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
不倦应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
23秒前
macarthur发布了新的文献求助10
23秒前
23秒前
HaojunWang完成签到 ,获得积分10
24秒前
脑洞疼应助wwrjj采纳,获得10
27秒前
Jacob完成签到,获得积分10
27秒前
聪明的宛菡完成签到,获得积分10
29秒前
殷勤的涵梅完成签到 ,获得积分10
31秒前
34秒前
36秒前
37秒前
老迟的新瑶完成签到 ,获得积分10
40秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212499
求助须知:如何正确求助?哪些是违规求助? 4388659
关于积分的说明 13664251
捐赠科研通 4249165
什么是DOI,文献DOI怎么找? 2331448
邀请新用户注册赠送积分活动 1329148
关于科研通互助平台的介绍 1282561