HelixMO: Sample-Efficient Molecular Optimization in Scene-Sensitive Latent Space

计算机科学 样品(材料) 空格(标点符号) 样品空间 人工智能 计算机视觉 模式识别(心理学) 物理 热力学 操作系统
作者
Zhiyuan Chen,Xiaomin Fang,Zixu Hua,Yueyang Huang,Fan Wang,Hua Wu
标识
DOI:10.1109/bibm55620.2022.9995561
摘要

Efficient exploration of the chemical space to search the candidate drugs that satisfy various constraints is a fundamental task of drug discovery. Advanced deep generative methods attempt to optimize the molecules in the compact latent space instead of the discrete original space, but the mapping between the original and latent spaces is always kept unchanged during the entire optimization process. The unchanged mapping makes those methods challenging to fast adapt to various optimization scenes and leads to the great demand for assessed molecules (samples) to provide optimization direction, which is a considerable expense for drug discovery. To this end, we design a sample-efficient molecular generative method, HelixMO, which explores the scene-sensitive latent space to promote sample efficiency. The scene-sensitive latent space focuses more on modeling the promising molecules by dynamically adjusting the space mapping by leveraging the correlations between the general and scene-specific characteristics during the optimization process. Extensive experiments demonstrate that HelixMO can achieve competitive performance with only a few assessed samples on four molecular optimization scenes. Ablation studies verify the positive impact of the scene-specific latent space, which is capable of identifying the critical characteristics of the promising molecules. We also deployed HelixMO on the website PaddleHelix (https://paddlehelix.baidu.com/app/drug/drugdesign/forecast) to provide drug design service.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vicki发布了新的文献求助10
2秒前
3秒前
Island发布了新的文献求助10
4秒前
袁来如此发布了新的文献求助10
4秒前
NexusExplorer应助乐观忆灵采纳,获得10
6秒前
科目三应助llll采纳,获得10
8秒前
9秒前
yuchengZ关注了科研通微信公众号
10秒前
sad发布了新的文献求助20
10秒前
10秒前
小乌龟发布了新的文献求助10
10秒前
accept发布了新的文献求助10
10秒前
keyanhunzi完成签到,获得积分10
10秒前
1397完成签到,获得积分20
11秒前
11秒前
11秒前
Madge完成签到,获得积分20
11秒前
Island完成签到,获得积分10
12秒前
默默的棒棒糖完成签到 ,获得积分10
12秒前
酷波er应助chen采纳,获得10
12秒前
鹅鹅完成签到 ,获得积分10
13秒前
帅小主发布了新的文献求助10
13秒前
14秒前
希望天下0贩的0应助liux采纳,获得10
14秒前
gguc完成签到,获得积分10
15秒前
科研通AI5应助三时寒采纳,获得10
16秒前
SHzheng发布了新的文献求助10
17秒前
reflux应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
cicy发布了新的文献求助20
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
18秒前
orixero应助科研通管家采纳,获得10
18秒前
18秒前
yuchengZ发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553933
求助须知:如何正确求助?哪些是违规求助? 3129728
关于积分的说明 9384042
捐赠科研通 2828848
什么是DOI,文献DOI怎么找? 1555246
邀请新用户注册赠送积分活动 725940
科研通“疑难数据库(出版商)”最低求助积分说明 715331