断层(地质)
瞬态(计算机编程)
噪音(视频)
干扰(通信)
方位(导航)
分割
特征提取
计算机科学
信号(编程语言)
频带
故障指示器
特征(语言学)
背景噪声
工程类
控制理论(社会学)
电子工程
故障检测与隔离
人工智能
电信
地震学
地质学
频道(广播)
哲学
执行机构
图像(数学)
程序设计语言
操作系统
控制(管理)
带宽(计算)
语言学
作者
Binghuan Cai,Long Zhang,Gang Tang
出处
期刊:Measurement
[Elsevier]
日期:2022-12-13
卷期号:206: 112333-112333
被引量:7
标识
DOI:10.1016/j.measurement.2022.112333
摘要
Extracting weak repetitive transients is crucial for rolling bearing fault diagnosis. Most existing periodic fault feature extraction techniques are prone to be affected by the interference of transmission paths, background noise, and incidental shocks. One of the primary reasons is that a constant spectrum segmentation strategy may result in a loss of significant fault information. Another reason is that many indicators do not simultaneously consider impulsiveness and cyclostationarity of fault transient impulses. Therefore, an autonomous weak transient fault enhancement strategy called Encogram is proposed in this paper, which can adaptively segment frequency bands based on spectrum distribution characteristics and immunize an influence of inevitable incidental shocks and strong background noise. Compared to Kurtogram, Autogram, and other state-of-the-art signal processing methods, the proposed Encogram can obtain a frequency band with rich fault information and less noise interference.
科研通智能强力驱动
Strongly Powered by AbleSci AI