Characteristic analysis of magnetorheological fluid porous fabric composite with a novel constitute model

磁流变液 材料科学 粘弹性 多孔性 复合材料 剪切(地质) 剪应力 复合数 结构工程 工程类 阻尼器
作者
Pingyang Li,Xiaomin Dong,Kaixiang Wang,Jinchao Ran,Baolin Yang
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:32 (2): 025002-025002 被引量:2
标识
DOI:10.1088/1361-665x/acad4f
摘要

Abstract As a novel material, magnetorheological fluid porous fabric composite (MRF-PF) has not been further analyzed and modeled. In this paper, mechanical properties of MRF-PF are analyzed quantitatively and qualitatively with a novel constitute model. Considering the wall slip, viscoelasticity and internal porous network of MRF-PF, a constitute model of MRF-PF is derived firstly which can describe the performance precisely. According to experimental results, mechanical properties of MRF-PF are different from conventional MRF. Shear stress τ decreases first, then increases slowly at off-state. Under low magnetic field, shear stress τ presents the opposite variation. It increases at first, and then decreases rapidly. With the further increase of magnetic field, Shear stress τ increases dramatically at high shear rate. This effect is determined by the internal porous network and absorption degree of MRF-PF. A possible flow mechanism of MRF-PF has been proposed. Comparing with different types of MRF-PFs, pre-immersed MRF-PF without relative rotation has a better performance. The maximum shear stress can reach as high as 62.35 kPa with an increase of 22.37% under the magnetic field of 0.7 T. The corresponding dynamic yield stress τ y increases to 55.18 kPa with an increase of 26.6%. What is more, internal porous network can support the particle chains to reinforce the shear-resistance property. The shear thinning effect of MRF-PF can be improved significantly. However, MR effect of MRF-PF decreases largely. These attractive mechanical properties make MRF-PF a potential choice for critical engineering applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nn完成签到,获得积分10
刚刚
科研通AI6应助Yy采纳,获得10
刚刚
nannan完成签到,获得积分20
1秒前
1秒前
1秒前
渤大小mn发布了新的文献求助10
1秒前
2秒前
2秒前
starrism发布了新的文献求助10
2秒前
隐形曼青应助谦让的含海采纳,获得10
2秒前
沐沐完成签到,获得积分10
2秒前
云溪发布了新的文献求助10
3秒前
Dimples完成签到,获得积分10
3秒前
3秒前
dong发布了新的文献求助10
3秒前
今后应助老毛采纳,获得10
3秒前
4秒前
cuicy完成签到,获得积分10
4秒前
hdbys完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
可靠的西牛关注了科研通微信公众号
5秒前
万能图书馆应助sss采纳,获得10
5秒前
张英歌发布了新的文献求助10
6秒前
算命先生完成签到,获得积分10
6秒前
可爱的函函应助王女士采纳,获得10
6秒前
nannan发布了新的文献求助10
6秒前
6秒前
Ellen完成签到,获得积分10
7秒前
善学以致用应助fun采纳,获得10
7秒前
科研通AI6应助鳗鱼觅珍采纳,获得30
7秒前
Hello应助夏安采纳,获得10
7秒前
yeoyoo驳回了mono应助
7秒前
123完成签到,获得积分20
7秒前
8秒前
张肥肥发布了新的文献求助10
8秒前
8秒前
cuicy发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853