亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mid-level data fusion of Raman spectroscopy and laser-induced breakdown spectroscopy: Improving ores identification accuracy

拉曼光谱 激光诱导击穿光谱 融合 化学 模式识别(心理学) 光谱学 鉴定(生物学) 人工智能 生物系统 卷积神经网络 分析化学(期刊) 传感器融合 激光器 计算机科学 光学 色谱法 物理 生物 哲学 量子力学 植物 语言学
作者
Qi Wang,Jianting Xiao,Ying Li,Yuan Lu,Jinjia Guo,Ye Tian,Lihui Ren
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1240: 340772-340772 被引量:17
标识
DOI:10.1016/j.aca.2022.340772
摘要

The identification of ore samples is of great scientific significance for mineral exploration, and geological evolution research on the planets. Attributed to the changes in the composition and structure of the same ore, the fusion of multiple technologies can effectively meet the comprehensive and accurate analysis of actual samples compared with a single technology. We develop an efficient method of applying the combination of Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) to ores identification. We construct a convolutional neural network (CNN) model and train it with mid-level Raman-LIBS fusion spectra of ores. Also, we develop a hybrid feature selection method AVPSO based on analysis of variance (ANOVA) with the particle swarm optimization (PSO) to improve the classification performance of the model. Compared with the model features visualized by Grad-CAM method, the similarity selected features verify the effectiveness of the AVPSO method. The identification of mid-level fusion strategy provides the best accuracy of 98%, while the accuracies of Raman and LIBS are slightly lower with values of 87.9% and 91.3%, respectively. The proposed method is of great significance for the rapid and accurate identification of ore samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chelly发布了新的文献求助10
17秒前
Orange应助读书的时候采纳,获得10
28秒前
科研通AI2S应助给好评采纳,获得10
34秒前
大模型应助Nichols采纳,获得10
35秒前
41秒前
给好评发布了新的文献求助10
46秒前
顾矜应助读书的时候采纳,获得10
59秒前
1分钟前
1分钟前
1分钟前
我爱学习完成签到,获得积分10
1分钟前
1分钟前
小璐完成签到,获得积分20
1分钟前
我爱学习发布了新的文献求助10
1分钟前
Linda发布了新的文献求助10
1分钟前
1分钟前
kangwen发布了新的文献求助10
1分钟前
1分钟前
顾矜应助一见喜采纳,获得10
1分钟前
Linda完成签到,获得积分10
1分钟前
1分钟前
科研通AI6.1应助lemon采纳,获得10
1分钟前
1分钟前
一见喜发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
风吹麦田应助kangwen采纳,获得30
2分钟前
2分钟前
Lan完成签到 ,获得积分10
2分钟前
lemon完成签到,获得积分10
2分钟前
在水一方应助小璐采纳,获得10
2分钟前
lemon发布了新的文献求助10
2分钟前
充电宝应助伊祁夜明采纳,获得10
2分钟前
3分钟前
西早完成签到 ,获得积分10
3分钟前
Nichols发布了新的文献求助20
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731973
求助须知:如何正确求助?哪些是违规求助? 5335177
关于积分的说明 15321878
捐赠科研通 4877749
什么是DOI,文献DOI怎么找? 2620617
邀请新用户注册赠送积分活动 1569892
关于科研通互助平台的介绍 1526410