TrEnD: A transformer‐based encoder‐decoder model with adaptive patch embedding for mass segmentation in mammograms

计算机科学 人工智能 分割 编码器 模式识别(心理学) 图像分割 稳健性(进化) 嵌入 计算机视觉 生物化学 基因 操作系统 化学
作者
Dongdong Liu,Bo Wu,Changbo Li,Zheng Sun,Nan Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 2884-2899 被引量:5
标识
DOI:10.1002/mp.16216
摘要

Breast cancer is one of the most prevalent malignancies diagnosed in women. Mammogram inspection in the search and delineation of breast tumors is an essential prerequisite for a reliable diagnosis. However, analyzing mammograms by radiologists is time-consuming and prone to errors. Therefore, the development of computer-aided diagnostic (CAD) systems to automate the mass segmentation procedure is greatly expected.Accurate breast mass segmentation in mammograms remains challenging in CAD systems due to the low contrast, various shapes, and fuzzy boundaries of masses. In this paper, we propose a fully automatic and effective mass segmentation model based on deep learning for improving segmentation performance.We propose an effective transformer-based encoder-decoder model (TrEnD). Firstly, we introduce a lightweight method for adaptive patch embedding (APE) of the transformer, which utilizes superpixels to adaptively adjust the size and position of each patch. Secondly, we introduce a hierarchical transformer-encoder and attention-gated-decoder structure, which is beneficial for progressively suppressing interference feature activations in irrelevant background areas. Thirdly, a dual-branch design is employed to extract and fuse globally coarse and locally fine features in parallel, which could capture the global contextual information and ensure the relevance and integrity of local information. The model is evaluated on two public datasets CBIS-DDSM and INbreast. To further demonstrate the robustness of TrEnD, different cropping strategies are applied to these datasets, termed tight, loose, maximal, and mix-frame. Finally, ablation analysis is performed to assess the individual contribution of each module to the model performance.The proposed segmentation model provides a high Dice coefficient and Intersection over Union (IoU) of 92.20% and 85.81% on the mix-frame CBIS-DDSM, while 91.83% and 85.29% for the mix-frame INbreast, respectively. The segmentation performance outperforms the current state-of-the-art approaches. By adding the APE and attention-gated module, the Dice and IoU have improved by 6.54% and 10.07%.According to extensive qualitative and quantitative assessments, the proposed network is effective for automatic breast mass segmentation, and has adequate potential to offer technical assistance for subsequent clinical diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李付清完成签到,获得积分10
1秒前
高贵的雅山完成签到,获得积分10
2秒前
2秒前
乐乐应助人间自在仙采纳,获得10
4秒前
完美世界应助皮卡丘采纳,获得20
6秒前
共享精神应助行7采纳,获得10
6秒前
11发布了新的文献求助10
7秒前
浮游应助化学采纳,获得10
9秒前
lyx完成签到,获得积分10
9秒前
Casf完成签到,获得积分10
10秒前
斯文败类应助xiaoxiang采纳,获得10
11秒前
情怀应助yb采纳,获得10
12秒前
英俊的铭应助ZHT采纳,获得10
13秒前
火星上的宝马完成签到,获得积分10
13秒前
14秒前
14秒前
朱剑洪完成签到,获得积分10
16秒前
ttt完成签到,获得积分10
17秒前
17秒前
清风发布了新的文献求助10
18秒前
20240901完成签到,获得积分10
19秒前
21秒前
qiuxia发布了新的文献求助10
21秒前
xiaoxiang完成签到,获得积分10
22秒前
23秒前
li完成签到,获得积分10
23秒前
LLL完成签到,获得积分10
25秒前
vvcat发布了新的文献求助10
25秒前
太阳完成签到,获得积分10
27秒前
qiuxia完成签到,获得积分20
28秒前
xiaoxiang发布了新的文献求助10
29秒前
30秒前
鱿鱼先生发布了新的文献求助10
31秒前
科研通AI6应助清风采纳,获得10
32秒前
ablat应助科研通管家采纳,获得10
33秒前
乐乐应助科研通管家采纳,获得10
33秒前
赘婿应助科研通管家采纳,获得10
33秒前
打打应助科研通管家采纳,获得30
33秒前
传奇3应助科研通管家采纳,获得10
33秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456751
求助须知:如何正确求助?哪些是违规求助? 4563362
关于积分的说明 14289575
捐赠科研通 4487973
什么是DOI,文献DOI怎么找? 2458113
邀请新用户注册赠送积分活动 1448473
关于科研通互助平台的介绍 1424128