亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Qualitative Analysis of Single Object and Multi Object Tracking Models

BitTorrent跟踪器 计算机科学 人工智能 视频跟踪 计算机视觉 跟踪(教育) 眼动 对象(语法) Boosting(机器学习) 目标检测 模式识别(心理学) 心理学 教育学
作者
Sumaira Manzoor,Kyu-Hyun Sung,Yueyuan Zhang,Ye-Chan An,Tae-Yong Kuc
标识
DOI:10.23919/iccas55662.2022.10003784
摘要

Tracking the object(s) of interest in the real world is one of the most salient research areas that has gained widespread attention due to its applications. Although different approaches based on traditional machine learning and modern deep learning have been proposed to tackle the single and multi-object tracking problems, these tasks are still challenging to perform. In our work, we conduct a comparative analysis of eleven object trackers to determine the most robust single object tracker (SOT) and multi-object tracker (MOT). The main contributions of our work are (1) employing nine pre-trained tracking algorithms to carry out the analysis for SOT that include: SiamMask, GOTURN, BOOSTING, MIL, KCF, TLD, MedianFlow, MOSSE, CSRT; (2) investigating MOT by integrating object detection models with object trackers using YOLOv4 combined with DeepSort, and CenterNet coupled with SORT; (3) creating our own testing videos dataset to perform experiments; (4) performing the qualitative analysis based on the visual representation of results by considering nine significant factors that are appearance and illumination variations, speed, accuracy, scale, partial and full-occlusion, report failure, and fast motion. Experimental results demonstrate that SiamMask tracker overcomes most of the environmental challenges for SOT while YOLOv+DeepSort tracker obtains good performance for MOT. However, these trackers are not robust enough to handle full occlusion in real-world scenarios and there is always a trade-off between tracking accuracy and speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Estelle.发布了新的文献求助20
刚刚
小蘑菇应助中原第一深情采纳,获得10
5秒前
忧郁小鸽子完成签到,获得积分10
15秒前
BowieHuang应助科研通管家采纳,获得10
18秒前
整齐的不评完成签到,获得积分10
20秒前
赘婿应助Estelle.采纳,获得10
27秒前
善良的冰颜完成签到 ,获得积分10
30秒前
34秒前
36秒前
Estelle.完成签到,获得积分10
37秒前
Wone3完成签到 ,获得积分10
49秒前
50秒前
靓丽的盼柳发布了新的文献求助100
1分钟前
1分钟前
整齐的千万完成签到,获得积分10
1分钟前
中原第一深情完成签到,获得积分10
1分钟前
1分钟前
白华苍松发布了新的文献求助20
1分钟前
洸彦完成签到 ,获得积分10
1分钟前
1分钟前
小二郎应助白华苍松采纳,获得10
1分钟前
1分钟前
深情安青应助无风风采纳,获得10
1分钟前
1分钟前
Efaith发布了新的文献求助10
1分钟前
Ania99完成签到 ,获得积分10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
2分钟前
麦乐迪完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
呜呜吴完成签到,获得积分10
3分钟前
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
4分钟前
自律发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590513
求助须知:如何正确求助?哪些是违规求助? 4674789
关于积分的说明 14795291
捐赠科研通 4632598
什么是DOI,文献DOI怎么找? 2532781
邀请新用户注册赠送积分活动 1501293
关于科研通互助平台的介绍 1468687