Qualitative Analysis of Single Object and Multi Object Tracking Models

BitTorrent跟踪器 计算机科学 人工智能 视频跟踪 计算机视觉 跟踪(教育) 眼动 对象(语法) Boosting(机器学习) 目标检测 模式识别(心理学) 心理学 教育学
作者
Sumaira Manzoor,Kyu-Hyun Sung,Yueyuan Zhang,Ye-Chan An,Tae-Yong Kuc
标识
DOI:10.23919/iccas55662.2022.10003784
摘要

Tracking the object(s) of interest in the real world is one of the most salient research areas that has gained widespread attention due to its applications. Although different approaches based on traditional machine learning and modern deep learning have been proposed to tackle the single and multi-object tracking problems, these tasks are still challenging to perform. In our work, we conduct a comparative analysis of eleven object trackers to determine the most robust single object tracker (SOT) and multi-object tracker (MOT). The main contributions of our work are (1) employing nine pre-trained tracking algorithms to carry out the analysis for SOT that include: SiamMask, GOTURN, BOOSTING, MIL, KCF, TLD, MedianFlow, MOSSE, CSRT; (2) investigating MOT by integrating object detection models with object trackers using YOLOv4 combined with DeepSort, and CenterNet coupled with SORT; (3) creating our own testing videos dataset to perform experiments; (4) performing the qualitative analysis based on the visual representation of results by considering nine significant factors that are appearance and illumination variations, speed, accuracy, scale, partial and full-occlusion, report failure, and fast motion. Experimental results demonstrate that SiamMask tracker overcomes most of the environmental challenges for SOT while YOLOv+DeepSort tracker obtains good performance for MOT. However, these trackers are not robust enough to handle full occlusion in real-world scenarios and there is always a trade-off between tracking accuracy and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
深情安青应助昵称待定采纳,获得10
1秒前
2秒前
2秒前
3秒前
4秒前
Ava应助...采纳,获得10
4秒前
4秒前
现实的行云完成签到,获得积分20
4秒前
爆米花应助鳗鱼飞船采纳,获得10
4秒前
4秒前
4秒前
4秒前
顾北发布了新的文献求助10
4秒前
呜呼啦呼完成签到 ,获得积分10
6秒前
灼萤栖木发布了新的文献求助10
6秒前
哈哈哈发布了新的文献求助10
7秒前
Epiphany发布了新的文献求助10
7秒前
钱多多完成签到,获得积分10
7秒前
陈博文发布了新的文献求助10
7秒前
7秒前
___完成签到,获得积分10
8秒前
iMoney发布了新的文献求助10
8秒前
8秒前
8秒前
义气的慕卉完成签到,获得积分10
8秒前
9秒前
昕昕233发布了新的文献求助10
9秒前
sssssssssss发布了新的文献求助10
9秒前
飘零枫叶发布了新的文献求助10
9秒前
852应助lantZa采纳,获得10
10秒前
顾北完成签到,获得积分10
10秒前
hearts_j关注了科研通微信公众号
10秒前
11秒前
11秒前
科研助手6应助科研通管家采纳,获得10
12秒前
今后应助独特的兰采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
怎么说应助科研通管家采纳,获得10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344