清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning for Cross-Diagnostic Prediction of Mental Disorder Diagnosis and Prognosis Using Danish Nationwide Register and Genetic Data

双相情感障碍 重性抑郁障碍 精神科 医学 自闭症谱系障碍 人口 队列 医学诊断 精神障碍患病率 临床心理学 自闭症 儿科 心理健康 心情 内科学 病理 环境卫生
作者
Rosa Lundbye Allesøe,Wesley K. Thompson,Jonas Bybjerg‐Grauholm,David M. Hougaard,Merete Nordentoft,Thomas Werge,Simon Rasmussen,Michael E. Benros
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:80 (2): 146-146 被引量:19
标识
DOI:10.1001/jamapsychiatry.2022.4076
摘要

Diagnoses and treatment of mental disorders are hampered by the current lack of objective markers needed to provide a more precise diagnosis and treatment strategy.To develop deep learning models to predict mental disorder diagnosis and severity spanning multiple diagnoses using nationwide register data, family and patient-specific diagnostic history, birth-related measurement, and genetics.This study was conducted from May 1, 1981, to December 31, 2016. For the analysis, which used a Danish population-based case-cohort sample of individuals born between 1981 and 2005, genotype data and matched longitudinal health register data were taken from the longitudinal Danish population-based Integrative Psychiatric Research Consortium 2012 case-cohort study. Included were individuals with mental disorders (attention-deficit/hyperactivity disorder [ADHD]), autism spectrum disorder (ASD), major depressive disorder (MDD), bipolar disorder (BD), schizophrenia spectrum disorders (SCZ), and population controls. Data were analyzed from February 1, 2021, to January 24, 2022.At least 1 hospital contact with diagnosis of ADHD, ASD, MDD, BD, or SCZ.The predictability of (1) mental disorder diagnosis and (2) severity trajectories (measured by future outpatient hospital contacts, admissions, and suicide attempts) were investigated using both a cross-diagnostic and single-disorder setup. Predictive power was measured by AUC, accuracy, and Matthews correlation coefficient (MCC), including an estimate of feature importance.A total of 63 535 individuals (mean [SD] age, 23 [7] years; 34 944 male [55%]; 28 591 female [45%]) were included in the model. Based on data prior to diagnosis, the specific diagnosis was predicted in a multidiagnostic prediction model including the background population with an overall area under the curve (AUC) of 0.81 and MCC of 0.28, whereas the single-disorder models gave AUCs/MCCs of 0.84/0.54 for SCZ, 0.79/0.41 for BD, 0.77/0.39 for ASD, 0.74/0.38, for ADHD, and 0.74/0.38 for MDD. The most important data sets for multidiagnostic prediction were previous mental disorders and age (11%-23% reduction in prediction accuracy when removed) followed by family diagnoses, birth-related measurements, and genetic data (3%-5% reduction in prediction accuracy when removed). Furthermore, when predicting subsequent disease trajectories of the disorder, the most severe cases were the most easily predictable, with an AUC of 0.72.Results of this diagnostic study suggest the possibility of combining genetics and registry data to predict both mental disorder diagnosis and disorder progression in a clinically relevant, cross-diagnostic setting prior to clinical assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
Frenda发布了新的文献求助10
18秒前
阿巴完成签到 ,获得积分10
1分钟前
DENGZHAOMING完成签到,获得积分10
1分钟前
黑球完成签到,获得积分10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
酷波er应助DENGZHAOMING采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
ma发布了新的文献求助10
2分钟前
wodetaiyangLLL完成签到 ,获得积分10
2分钟前
FashionBoy应助yyyyy采纳,获得10
2分钟前
方白秋完成签到,获得积分10
2分钟前
wueeee完成签到,获得积分20
3分钟前
传奇3应助科研通管家采纳,获得50
3分钟前
LeoBigman完成签到 ,获得积分10
3分钟前
不停疯狂完成签到 ,获得积分10
4分钟前
黑球发布了新的文献求助10
4分钟前
4分钟前
科研通AI5应助Frenda采纳,获得10
4分钟前
4分钟前
Frenda发布了新的文献求助10
4分钟前
聪慧芷巧完成签到,获得积分20
4分钟前
老石完成签到 ,获得积分10
5分钟前
5分钟前
DENGZHAOMING发布了新的文献求助10
5分钟前
吐丝麵包完成签到 ,获得积分10
5分钟前
syiimo完成签到 ,获得积分10
5分钟前
Owen应助科研通管家采纳,获得10
5分钟前
光亮的自行车完成签到 ,获得积分10
6分钟前
乐乐应助星星采纳,获得10
7分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
星星发布了新的文献求助10
7分钟前
yyyyy发布了新的文献求助10
8分钟前
starry完成签到 ,获得积分10
8分钟前
充电宝应助友宝小丸子采纳,获得10
8分钟前
友宝小丸子完成签到,获得积分20
8分钟前
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674464
求助须知:如何正确求助?哪些是违规求助? 3229748
关于积分的说明 9787042
捐赠科研通 2940303
什么是DOI,文献DOI怎么找? 1611861
邀请新用户注册赠送积分活动 761060
科研通“疑难数据库(出版商)”最低求助积分说明 736427