An adaptive federated learning system for community building energy load forecasting and anomaly prediction

计算机科学 异常检测 大数据 机器学习 数据挖掘 能量(信号处理) 人工智能 数学 统计
作者
Rui Wang,Hongguang Yun,Rakiba Rayhana,Junchi Bin,Chengkai Zhang,Omar E. Herrera,Zheng Liu,Walter Mérida
出处
期刊:Energy and Buildings [Elsevier]
卷期号:295: 113215-113215
标识
DOI:10.1016/j.enbuild.2023.113215
摘要

Energy load forecasting is critical for sustainable building development and management. Although the energy data could be collected through Internet of Things (IoT) systems, it is a big challenge to train a large-scale machine learning model due to data isolation. Since the building energy data could reveal confidential information such as user behaviors and building operations, the privacy regulations would not allow central service to collect distributed data from data owners directly. This paper designs a secure federated data analytics system for forecasting community buildings' energy data load. A novel adaptive weight federated learning algorithm is proposed to handle the system faults frequently happening during networking operations. Moreover, a new deep learning model is re-invented to improve energy load forecasting performance. The experiments of the system are performed on an actual university campus dataset, and the results show the new federated algorithm improves the load forecasting accuracy and achieves the best load forecasting result. The new deep learning model improves the forecasting accuracy by almost 10% on error reduction under the same federated learning settings. To evaluate the load forecasting model's practical usefulness, an anomaly prediction pipeline is designed through the combination of gaussian mixture model and load forecasting model, which reveals the system's effectiveness at building energy management that 92% F1 score with 97% accuracy is achieved by the best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
orixero应助时倾采纳,获得10
2秒前
2秒前
完美世界应助cfer采纳,获得10
2秒前
2秒前
卡卡不卡完成签到,获得积分10
3秒前
fun发布了新的文献求助10
3秒前
小张完成签到 ,获得积分10
3秒前
5秒前
lsl发布了新的文献求助10
5秒前
bkagyin应助逍遥采纳,获得10
5秒前
5秒前
6秒前
dddd完成签到,获得积分10
6秒前
ding应助dengx1采纳,获得10
7秒前
英姑应助大河弯弯向东流采纳,获得30
7秒前
枫星羽发布了新的文献求助10
7秒前
雾里无他发布了新的文献求助10
7秒前
毅逸完成签到,获得积分10
7秒前
星星发布了新的文献求助10
7秒前
希望天下0贩的0应助zyp采纳,获得10
8秒前
orixero应助远见的鹰采纳,获得10
8秒前
Mollymama完成签到 ,获得积分10
8秒前
无限的妖妖完成签到,获得积分10
9秒前
君子扑火发布了新的文献求助10
10秒前
wxy发布了新的文献求助150
10秒前
小薛发布了新的文献求助10
11秒前
wjkvince完成签到,获得积分10
12秒前
星星完成签到,获得积分10
13秒前
13秒前
13秒前
NexusExplorer应助zzz采纳,获得10
14秒前
汉堡包应助韩十四采纳,获得10
14秒前
14秒前
15秒前
16秒前
17秒前
17秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442722
求助须知:如何正确求助?哪些是违规求助? 4552855
关于积分的说明 14239277
捐赠科研通 4474129
什么是DOI,文献DOI怎么找? 2451921
邀请新用户注册赠送积分活动 1442839
关于科研通互助平台的介绍 1418593