An adaptive federated learning system for community building energy load forecasting and anomaly prediction

计算机科学 异常检测 大数据 机器学习 数据挖掘 能量(信号处理) 人工智能 数学 统计
作者
Rui Wang,Hongguang Yun,Rakiba Rayhana,Junchi Bin,Chengkai Zhang,Omar E. Herrera,Zheng Liu,Walter Mérida
出处
期刊:Energy and Buildings [Elsevier]
卷期号:295: 113215-113215
标识
DOI:10.1016/j.enbuild.2023.113215
摘要

Energy load forecasting is critical for sustainable building development and management. Although the energy data could be collected through Internet of Things (IoT) systems, it is a big challenge to train a large-scale machine learning model due to data isolation. Since the building energy data could reveal confidential information such as user behaviors and building operations, the privacy regulations would not allow central service to collect distributed data from data owners directly. This paper designs a secure federated data analytics system for forecasting community buildings' energy data load. A novel adaptive weight federated learning algorithm is proposed to handle the system faults frequently happening during networking operations. Moreover, a new deep learning model is re-invented to improve energy load forecasting performance. The experiments of the system are performed on an actual university campus dataset, and the results show the new federated algorithm improves the load forecasting accuracy and achieves the best load forecasting result. The new deep learning model improves the forecasting accuracy by almost 10% on error reduction under the same federated learning settings. To evaluate the load forecasting model's practical usefulness, an anomaly prediction pipeline is designed through the combination of gaussian mixture model and load forecasting model, which reveals the system's effectiveness at building energy management that 92% F1 score with 97% accuracy is achieved by the best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Zz发布了新的文献求助10
2秒前
loong发布了新的文献求助10
3秒前
YHK完成签到,获得积分10
3秒前
3秒前
liujunhong关注了科研通微信公众号
5秒前
小鹿斑比发布了新的文献求助10
5秒前
xxwyj完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
touch发布了新的文献求助10
6秒前
葭月十七完成签到,获得积分10
7秒前
7秒前
孤僻完成签到,获得积分10
7秒前
sisi发布了新的文献求助10
7秒前
7秒前
7秒前
ok完成签到 ,获得积分10
8秒前
芋圆完成签到,获得积分10
8秒前
小二郎应助???采纳,获得10
8秒前
小小完成签到 ,获得积分10
8秒前
9秒前
爱学习的小凌完成签到,获得积分10
9秒前
Opse完成签到,获得积分0
9秒前
十七发布了新的文献求助10
10秒前
易烊千玺发布了新的文献求助10
10秒前
suofzcn发布了新的文献求助10
11秒前
瘦瘦寒云发布了新的文献求助10
11秒前
小鹿斑比完成签到,获得积分10
11秒前
科研通AI2S应助孤僻采纳,获得10
11秒前
Inspiring发布了新的文献求助10
12秒前
wwx完成签到,获得积分10
12秒前
随行由心发布了新的文献求助10
12秒前
kaicunY发布了新的文献求助10
12秒前
12秒前
13秒前
豆小豆发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144189
求助须知:如何正确求助?哪些是违规求助? 2795795
关于积分的说明 7816709
捐赠科研通 2451879
什么是DOI,文献DOI怎么找? 1304729
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419