An adaptive federated learning system for community building energy load forecasting and anomaly prediction

计算机科学 异常检测 大数据 机器学习 数据挖掘 能量(信号处理) 人工智能 数学 统计
作者
Rui Wang,Hongguang Yun,Rakiba Rayhana,Junchi Bin,Chengkai Zhang,Omar E. Herrera,Zheng Liu,Walter Mérida
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:295: 113215-113215
标识
DOI:10.1016/j.enbuild.2023.113215
摘要

Energy load forecasting is critical for sustainable building development and management. Although the energy data could be collected through Internet of Things (IoT) systems, it is a big challenge to train a large-scale machine learning model due to data isolation. Since the building energy data could reveal confidential information such as user behaviors and building operations, the privacy regulations would not allow central service to collect distributed data from data owners directly. This paper designs a secure federated data analytics system for forecasting community buildings' energy data load. A novel adaptive weight federated learning algorithm is proposed to handle the system faults frequently happening during networking operations. Moreover, a new deep learning model is re-invented to improve energy load forecasting performance. The experiments of the system are performed on an actual university campus dataset, and the results show the new federated algorithm improves the load forecasting accuracy and achieves the best load forecasting result. The new deep learning model improves the forecasting accuracy by almost 10% on error reduction under the same federated learning settings. To evaluate the load forecasting model's practical usefulness, an anomaly prediction pipeline is designed through the combination of gaussian mixture model and load forecasting model, which reveals the system's effectiveness at building energy management that 92% F1 score with 97% accuracy is achieved by the best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
苯二氮卓发布了新的文献求助20
1秒前
菜头完成签到,获得积分10
1秒前
binxman发布了新的文献求助10
1秒前
成功应助jiajia采纳,获得10
2秒前
我爱Chem发布了新的文献求助10
3秒前
5秒前
17完成签到,获得积分10
5秒前
like发布了新的文献求助10
5秒前
5秒前
传奇3应助Ventus采纳,获得10
5秒前
清风完成签到,获得积分20
5秒前
5秒前
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
Owen应助哈基米采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
鸣笛应助科研通管家采纳,获得10
6秒前
6秒前
刻苦的三问应助ddz采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
毛豆爸爸应助科研通管家采纳,获得20
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
7秒前
宋小九发布了新的文献求助10
7秒前
Mp4完成签到 ,获得积分10
8秒前
Jerry发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974882
求助须知:如何正确求助?哪些是违规求助? 3519431
关于积分的说明 11198315
捐赠科研通 3255698
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877237
科研通“疑难数据库(出版商)”最低求助积分说明 806219