An adaptive federated learning system for community building energy load forecasting and anomaly prediction

计算机科学 异常检测 大数据 机器学习 数据挖掘 能量(信号处理) 人工智能 数学 统计
作者
Rui Wang,Hongguang Yun,Rakiba Rayhana,Junchi Bin,Chengkai Zhang,Omar E. Herrera,Zheng Liu,Walter Mérida
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:295: 113215-113215
标识
DOI:10.1016/j.enbuild.2023.113215
摘要

Energy load forecasting is critical for sustainable building development and management. Although the energy data could be collected through Internet of Things (IoT) systems, it is a big challenge to train a large-scale machine learning model due to data isolation. Since the building energy data could reveal confidential information such as user behaviors and building operations, the privacy regulations would not allow central service to collect distributed data from data owners directly. This paper designs a secure federated data analytics system for forecasting community buildings' energy data load. A novel adaptive weight federated learning algorithm is proposed to handle the system faults frequently happening during networking operations. Moreover, a new deep learning model is re-invented to improve energy load forecasting performance. The experiments of the system are performed on an actual university campus dataset, and the results show the new federated algorithm improves the load forecasting accuracy and achieves the best load forecasting result. The new deep learning model improves the forecasting accuracy by almost 10% on error reduction under the same federated learning settings. To evaluate the load forecasting model's practical usefulness, an anomaly prediction pipeline is designed through the combination of gaussian mixture model and load forecasting model, which reveals the system's effectiveness at building energy management that 92% F1 score with 97% accuracy is achieved by the best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
paperseeker发布了新的文献求助30
刚刚
1秒前
咔什么嚓发布了新的文献求助10
1秒前
做好自己完成签到 ,获得积分10
1秒前
帅气西牛完成签到,获得积分10
1秒前
1秒前
箱箱完成签到,获得积分10
2秒前
pluto_发布了新的文献求助10
2秒前
希望天下0贩的0应助HYF采纳,获得10
2秒前
3秒前
高挑的洋葱完成签到 ,获得积分10
3秒前
GreenT完成签到,获得积分10
3秒前
张一完成签到,获得积分10
3秒前
3秒前
阳光的寒凝完成签到,获得积分10
4秒前
4秒前
魔幻代梅发布了新的文献求助10
4秒前
cocu117完成签到 ,获得积分10
5秒前
快乐的尔白完成签到,获得积分10
5秒前
SCI完成签到,获得积分10
5秒前
韩天宇完成签到,获得积分10
5秒前
做好自己关注了科研通微信公众号
5秒前
5秒前
5秒前
顺心的自行车完成签到,获得积分10
5秒前
云中漫步完成签到,获得积分10
6秒前
黄石发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
隐形曼青应助佳佳采纳,获得10
7秒前
123完成签到,获得积分20
7秒前
8秒前
kid完成签到,获得积分10
8秒前
小肥锅完成签到 ,获得积分20
8秒前
不想干活应助rendong4009采纳,获得10
8秒前
王金禹发布了新的文献求助10
8秒前
柒小珏发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599730
求助须知:如何正确求助?哪些是违规求助? 4010192
关于积分的说明 12415278
捐赠科研通 3689855
什么是DOI,文献DOI怎么找? 2034068
邀请新用户注册赠送积分活动 1067344
科研通“疑难数据库(出版商)”最低求助积分说明 952301