亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

User-Driven Synthetic Dataset Generation With Quantifiable Differential Privacy

差别隐私 符号 计算机科学 合成数据 信息隐私 数据挖掘 情报检索 理论计算机科学 算法 计算机安全 数学 算术
作者
Bo-Chen Tai,Yao-Tung Tsou,Szu-Chuang Li,Yennun Huang,Pei-Yuan Tsai,Yu‐Cheng Tsai
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:16 (5): 3812-3826 被引量:2
标识
DOI:10.1109/tsc.2023.3287239
摘要

Recently, releasing data to a third party for secondary analysis has become a trend of service computing. However, data owners are concerned that such a move may expose individuals’ records, which is in violation of regulations such as the European Union's General Data Protection Regulation. Differential privacy has been proposed as a possible solution to the aforementioned problem. The privacy budget $\varepsilon$ in differential privacy is for theoretical interpretation, but in practice, its application in measuring the risk of data disclosure has not been well studied, especially with sampling-based synthetic datasets. Moreover, datasets released by data owners with quantifiable privacy levels and the explicit utility for these datasets have yet to be well developed. In this paper, we present an intuitive approach for defining the privacy level (i.e., data hit rate and $k$ -level) and utility level (i.e., basic statistics and a series of data mining models), and the privacy budget $\varepsilon$ is quantified for evaluating the risk and utility of private data. In addition, we propose two user-driven synthetic dataset hunting methods to generate a synthetic dataset with the specified privacy objective, enabling the data owner (e.g., the government and financial companies) to understand the possible privacy risk and thereby release datasets with confirmed privacy level. To the best of our knowledge, this is the first method that allows data providers to automatically generate synthetic datasets with a quantifiable privacy level for the service of open data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
量子星尘发布了新的文献求助10
18秒前
34秒前
激动的似狮完成签到,获得积分10
58秒前
59秒前
ICE_MILK发布了新的文献求助10
1分钟前
郗妫完成签到,获得积分10
1分钟前
1分钟前
ICE_MILK完成签到,获得积分10
1分钟前
jarrykim完成签到,获得积分10
1分钟前
勿惏发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
kaka发布了新的文献求助10
2分钟前
2分钟前
2分钟前
完美世界应助勿惏采纳,获得10
2分钟前
2分钟前
fladen给仗剑Z天涯的求助进行了留言
2分钟前
研友_VZG7GZ应助cqhecq采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
彭于晏应助Rick采纳,获得10
4分钟前
4分钟前
SciGPT应助浅弋采纳,获得10
4分钟前
4分钟前
4分钟前
cqhecq发布了新的文献求助10
4分钟前
JZX发布了新的文献求助10
4分钟前
4分钟前
Hello应助JZX采纳,获得30
4分钟前
浅弋发布了新的文献求助10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
Rick发布了新的文献求助10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503067
关于积分的说明 11111230
捐赠科研通 3234096
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264