Evaluation of automated detection of head position on lateral cephalometric radiographs based on deep learning techniques

射线照相术 人工智能 职位(财务) 残余物 试验装置 主管(地质) 口腔正畸科 集合(抽象数据类型) 数据集 计算机科学 诊断准确性 模式识别(心理学) 医学 核医学 放射科 算法 地质学 财务 地貌学 经济 程序设计语言
作者
Chen Jiang,Fulin Jiang,Zhuokai Xie,Jikui Sun,Sun Yan,Mei Zhang,Jiawei Zhou,Qingchen Feng,Guanning Zhang,Ke Xing,Hongxiang Mei,Juan Li
出处
期刊:Annals of Anatomy-anatomischer Anzeiger [Elsevier]
卷期号:250: 152114-152114 被引量:1
标识
DOI:10.1016/j.aanat.2023.152114
摘要

Lateral cephalometric radiograph (LCR) is crucial to diagnosis and treatment planning of maxillofacial diseases, but inappropriate head position, which reduces the accuracy of cephalometric measurements, can be challenging to detect for clinicians. This non-interventional retrospective study aims to develop two deep learning (DL) systems to efficiently, accurately, and instantly detect the head position on LCRs.LCRs from 13 centers were reviewed and a total of 3000 radiographs were collected and divided into 2400 cases (80.0 %) in the training set and 600 cases (20.0 %) in the validation set. Another 300 cases were selected independently as the test set. All the images were evaluated and landmarked by two board-certified orthodontists as references. The head position of the LCR was classified by the angle between the Frankfort Horizontal (FH) plane and the true horizontal (HOR) plane, and a value within - 3°- 3° was considered normal. The YOLOv3 model based on the traditional fixed-point method and the modified ResNet50 model featuring a non-linear mapping residual network were constructed and evaluated. Heatmap was generated to visualize the performances.The modified ResNet50 model showed a superior classification accuracy of 96.0 %, higher than 93.5 % of the YOLOv3 model. The sensitivity&recall and specificity of the modified ResNet50 model were 0.959, 0.969, and those of the YOLOv3 model were 0.846, 0.916. The area under the curve (AUC) values of the modified ResNet50 and the YOLOv3 model were 0.985 ± 0.04 and 0.942 ± 0.042, respectively. Saliency maps demonstrated that the modified ResNet50 model considered the alignment of cervical vertebras, not just the periorbital and perinasal areas, as the YOLOv3 model did.The modified ResNet50 model outperformed the YOLOv3 model in classifying head position on LCRs and showed promising potential in facilitating making accurate diagnoses and optimal treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张多发布了新的文献求助10
刚刚
刚刚
周周发布了新的文献求助10
1秒前
2秒前
2秒前
avalanche应助小玉采纳,获得30
3秒前
4秒前
科研通AI6应助jj采纳,获得10
4秒前
菜鸡游泳发布了新的文献求助10
5秒前
单于思雁完成签到,获得积分10
5秒前
白菜完成签到 ,获得积分0
5秒前
机灵夜云发布了新的文献求助10
6秒前
张多完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
6秒前
情怀应助陆启明采纳,获得10
7秒前
Heisenberg发布了新的文献求助10
7秒前
什么李发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
万能图书馆应助321采纳,获得10
12秒前
12秒前
12秒前
14秒前
ParkMoonJ发布了新的文献求助10
15秒前
15秒前
gmj发布了新的文献求助10
16秒前
mrmrer发布了新的文献求助10
16秒前
邢邢原硕发布了新的文献求助10
17秒前
小蘑菇应助master采纳,获得10
17秒前
18秒前
HRT发布了新的文献求助10
18秒前
18秒前
zz发布了新的文献求助10
18秒前
Marianna发布了新的文献求助10
19秒前
19秒前
三点水完成签到,获得积分10
20秒前
21秒前
哩哩发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416714
求助须知:如何正确求助?哪些是违规求助? 4532843
关于积分的说明 14136806
捐赠科研通 4448810
什么是DOI,文献DOI怎么找? 2440430
邀请新用户注册赠送积分活动 1432238
关于科研通互助平台的介绍 1409793