Evaluation of automated detection of head position on lateral cephalometric radiographs based on deep learning techniques

射线照相术 人工智能 职位(财务) 残余物 试验装置 主管(地质) 口腔正畸科 集合(抽象数据类型) 数据集 计算机科学 诊断准确性 模式识别(心理学) 医学 核医学 放射科 算法 地质学 经济 程序设计语言 地貌学 财务
作者
Chen Jiang,Fulin Jiang,Zhuokai Xie,Jikui Sun,Sun Yan,Mei Zhang,Jiawei Zhou,Qingchen Feng,Guanning Zhang,Ke Xing,Hongxiang Mei,Juan Li
出处
期刊:Annals of Anatomy-anatomischer Anzeiger [Elsevier BV]
卷期号:250: 152114-152114 被引量:1
标识
DOI:10.1016/j.aanat.2023.152114
摘要

Lateral cephalometric radiograph (LCR) is crucial to diagnosis and treatment planning of maxillofacial diseases, but inappropriate head position, which reduces the accuracy of cephalometric measurements, can be challenging to detect for clinicians. This non-interventional retrospective study aims to develop two deep learning (DL) systems to efficiently, accurately, and instantly detect the head position on LCRs.LCRs from 13 centers were reviewed and a total of 3000 radiographs were collected and divided into 2400 cases (80.0 %) in the training set and 600 cases (20.0 %) in the validation set. Another 300 cases were selected independently as the test set. All the images were evaluated and landmarked by two board-certified orthodontists as references. The head position of the LCR was classified by the angle between the Frankfort Horizontal (FH) plane and the true horizontal (HOR) plane, and a value within - 3°- 3° was considered normal. The YOLOv3 model based on the traditional fixed-point method and the modified ResNet50 model featuring a non-linear mapping residual network were constructed and evaluated. Heatmap was generated to visualize the performances.The modified ResNet50 model showed a superior classification accuracy of 96.0 %, higher than 93.5 % of the YOLOv3 model. The sensitivity&recall and specificity of the modified ResNet50 model were 0.959, 0.969, and those of the YOLOv3 model were 0.846, 0.916. The area under the curve (AUC) values of the modified ResNet50 and the YOLOv3 model were 0.985 ± 0.04 and 0.942 ± 0.042, respectively. Saliency maps demonstrated that the modified ResNet50 model considered the alignment of cervical vertebras, not just the periorbital and perinasal areas, as the YOLOv3 model did.The modified ResNet50 model outperformed the YOLOv3 model in classifying head position on LCRs and showed promising potential in facilitating making accurate diagnoses and optimal treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽的凌蝶完成签到,获得积分10
2秒前
正直画笔完成签到 ,获得积分10
2秒前
3秒前
ekm7k发布了新的文献求助30
3秒前
3秒前
浅斟低唱发布了新的文献求助10
6秒前
biyeshunli发布了新的文献求助10
6秒前
7秒前
忧郁的猕猴桃完成签到,获得积分10
8秒前
自信夜春发布了新的文献求助10
8秒前
bbanshan完成签到,获得积分10
8秒前
9秒前
zhouleibio完成签到,获得积分10
10秒前
王路飞发布了新的文献求助10
12秒前
随风完成签到,获得积分10
12秒前
星辰大海应助淡定访琴采纳,获得30
12秒前
勤劳元瑶完成签到,获得积分10
12秒前
自信夜春完成签到,获得积分10
14秒前
Panchael完成签到,获得积分10
15秒前
16秒前
for_abSCI完成签到,获得积分10
16秒前
kellen完成签到,获得积分10
16秒前
莱芙完成签到 ,获得积分10
16秒前
17秒前
调调单单发布了新的文献求助10
18秒前
科研小螃蟹完成签到,获得积分0
19秒前
今后应助浅斟低唱采纳,获得150
19秒前
领导范儿应助666采纳,获得10
19秒前
蒲蒲完成签到 ,获得积分10
20秒前
苏南完成签到 ,获得积分10
20秒前
Junly完成签到 ,获得积分10
21秒前
贪玩星完成签到,获得积分10
22秒前
风吹麦浪发布了新的文献求助10
22秒前
sylvia完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
落寞溪灵完成签到 ,获得积分10
26秒前
27秒前
北有云烟完成签到 ,获得积分10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093