已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of automated detection of head position on lateral cephalometric radiographs based on deep learning techniques

射线照相术 人工智能 职位(财务) 残余物 试验装置 主管(地质) 口腔正畸科 集合(抽象数据类型) 数据集 计算机科学 诊断准确性 模式识别(心理学) 医学 核医学 放射科 算法 地质学 财务 地貌学 经济 程序设计语言
作者
Chen Jiang,Fulin Jiang,Zhuokai Xie,Jikui Sun,Sun Yan,Mei Zhang,Jiawei Zhou,Qingchen Feng,Guanning Zhang,Ke Xing,Hongxiang Mei,Juan Li
出处
期刊:Annals of Anatomy-anatomischer Anzeiger [Elsevier]
卷期号:250: 152114-152114 被引量:1
标识
DOI:10.1016/j.aanat.2023.152114
摘要

Lateral cephalometric radiograph (LCR) is crucial to diagnosis and treatment planning of maxillofacial diseases, but inappropriate head position, which reduces the accuracy of cephalometric measurements, can be challenging to detect for clinicians. This non-interventional retrospective study aims to develop two deep learning (DL) systems to efficiently, accurately, and instantly detect the head position on LCRs.LCRs from 13 centers were reviewed and a total of 3000 radiographs were collected and divided into 2400 cases (80.0 %) in the training set and 600 cases (20.0 %) in the validation set. Another 300 cases were selected independently as the test set. All the images were evaluated and landmarked by two board-certified orthodontists as references. The head position of the LCR was classified by the angle between the Frankfort Horizontal (FH) plane and the true horizontal (HOR) plane, and a value within - 3°- 3° was considered normal. The YOLOv3 model based on the traditional fixed-point method and the modified ResNet50 model featuring a non-linear mapping residual network were constructed and evaluated. Heatmap was generated to visualize the performances.The modified ResNet50 model showed a superior classification accuracy of 96.0 %, higher than 93.5 % of the YOLOv3 model. The sensitivity&recall and specificity of the modified ResNet50 model were 0.959, 0.969, and those of the YOLOv3 model were 0.846, 0.916. The area under the curve (AUC) values of the modified ResNet50 and the YOLOv3 model were 0.985 ± 0.04 and 0.942 ± 0.042, respectively. Saliency maps demonstrated that the modified ResNet50 model considered the alignment of cervical vertebras, not just the periorbital and perinasal areas, as the YOLOv3 model did.The modified ResNet50 model outperformed the YOLOv3 model in classifying head position on LCRs and showed promising potential in facilitating making accurate diagnoses and optimal treatment plans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助PAPA采纳,获得10
1秒前
2秒前
Hello应助科研通管家采纳,获得10
3秒前
Hilda007应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
YifanWang应助科研通管家采纳,获得10
3秒前
Hilda007应助科研通管家采纳,获得10
3秒前
CCCheny应助科研通管家采纳,获得10
3秒前
YifanWang应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
4秒前
CCCheny应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得100
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得100
4秒前
Hello应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
SciGPT应助科研通管家采纳,获得30
4秒前
SciGPT应助科研通管家采纳,获得30
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
jike发布了新的文献求助10
8秒前
满丘山发布了新的文献求助10
9秒前
打打应助小包子采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938