Evaluation of automated detection of head position on lateral cephalometric radiographs based on deep learning techniques

射线照相术 人工智能 职位(财务) 残余物 试验装置 主管(地质) 口腔正畸科 集合(抽象数据类型) 数据集 计算机科学 诊断准确性 模式识别(心理学) 医学 核医学 放射科 算法 地质学 财务 地貌学 经济 程序设计语言
作者
Chen Jiang,Fulin Jiang,Zhuokai Xie,Jikui Sun,Sun Yan,Mei Zhang,Jiawei Zhou,Qingchen Feng,Guanning Zhang,Ke Xing,Hongxiang Mei,Juan Li
出处
期刊:Annals of Anatomy-anatomischer Anzeiger [Elsevier BV]
卷期号:250: 152114-152114 被引量:1
标识
DOI:10.1016/j.aanat.2023.152114
摘要

Lateral cephalometric radiograph (LCR) is crucial to diagnosis and treatment planning of maxillofacial diseases, but inappropriate head position, which reduces the accuracy of cephalometric measurements, can be challenging to detect for clinicians. This non-interventional retrospective study aims to develop two deep learning (DL) systems to efficiently, accurately, and instantly detect the head position on LCRs.LCRs from 13 centers were reviewed and a total of 3000 radiographs were collected and divided into 2400 cases (80.0 %) in the training set and 600 cases (20.0 %) in the validation set. Another 300 cases were selected independently as the test set. All the images were evaluated and landmarked by two board-certified orthodontists as references. The head position of the LCR was classified by the angle between the Frankfort Horizontal (FH) plane and the true horizontal (HOR) plane, and a value within - 3°- 3° was considered normal. The YOLOv3 model based on the traditional fixed-point method and the modified ResNet50 model featuring a non-linear mapping residual network were constructed and evaluated. Heatmap was generated to visualize the performances.The modified ResNet50 model showed a superior classification accuracy of 96.0 %, higher than 93.5 % of the YOLOv3 model. The sensitivity&recall and specificity of the modified ResNet50 model were 0.959, 0.969, and those of the YOLOv3 model were 0.846, 0.916. The area under the curve (AUC) values of the modified ResNet50 and the YOLOv3 model were 0.985 ± 0.04 and 0.942 ± 0.042, respectively. Saliency maps demonstrated that the modified ResNet50 model considered the alignment of cervical vertebras, not just the periorbital and perinasal areas, as the YOLOv3 model did.The modified ResNet50 model outperformed the YOLOv3 model in classifying head position on LCRs and showed promising potential in facilitating making accurate diagnoses and optimal treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助spy采纳,获得10
2秒前
4秒前
曹姗发布了新的文献求助30
5秒前
Li梨完成签到,获得积分10
5秒前
czyzyzy发布了新的文献求助10
8秒前
8秒前
11秒前
小y完成签到 ,获得积分10
12秒前
ada完成签到 ,获得积分10
12秒前
oo发布了新的文献求助10
13秒前
13秒前
乐乐应助zhang采纳,获得10
13秒前
LXY发布了新的文献求助10
15秒前
我是老大应助memory采纳,获得10
17秒前
17秒前
李健应助酷酷幻枫采纳,获得30
18秒前
小麻花发布了新的文献求助10
18秒前
18秒前
扎心发布了新的文献求助10
19秒前
甜美的冰姬完成签到,获得积分10
20秒前
凡迪亚比应助ada采纳,获得30
20秒前
21秒前
23秒前
huminjie完成签到 ,获得积分10
24秒前
向阳发布了新的文献求助10
25秒前
小二郎应助西子阳采纳,获得10
25秒前
22222发布了新的文献求助10
25秒前
小麻花完成签到,获得积分10
25秒前
YY完成签到,获得积分20
26秒前
天天快乐应助gg采纳,获得10
27秒前
KAI完成签到,获得积分10
27秒前
28秒前
28秒前
30秒前
脑洞疼应助FF采纳,获得10
30秒前
30秒前
完美世界应助csdv采纳,获得10
33秒前
共享精神应助123采纳,获得10
33秒前
MAKEYF完成签到 ,获得积分10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999530
求助须知:如何正确求助?哪些是违规求助? 3538968
关于积分的说明 11275514
捐赠科研通 3277819
什么是DOI,文献DOI怎么找? 1807686
邀请新用户注册赠送积分活动 884100
科研通“疑难数据库(出版商)”最低求助积分说明 810138