亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of automated detection of head position on lateral cephalometric radiographs based on deep learning techniques

射线照相术 人工智能 职位(财务) 残余物 试验装置 主管(地质) 口腔正畸科 集合(抽象数据类型) 数据集 计算机科学 诊断准确性 模式识别(心理学) 医学 核医学 放射科 算法 地质学 经济 程序设计语言 地貌学 财务
作者
Chen Jiang,Fulin Jiang,Zhinan Xie,Jing Sun,Yangying Sun,Mei Zhang,Jiawei Zhou,Qingchen Feng,Guanning Zhang,Ke Xing,Hongxiang Mei,Juan Li
出处
期刊:Annals of Anatomy-anatomischer Anzeiger [Elsevier]
卷期号:250: 152114-152114
标识
DOI:10.1016/j.aanat.2023.152114
摘要

Lateral cephalometric radiograph (LCR) is crucial to diagnosis and treatment planning of maxillofacial diseases, but inappropriate head position, which reduces the accuracy of cephalometric measurements, can be challenging to detect for clinicians. This non-interventional retrospective study aims to develop two deep learning (DL) systems to efficiently, accurately, and instantly detect the head position on LCRs.LCRs from 13 centers were reviewed and a total of 3000 radiographs were collected and divided into 2400 cases (80.0 %) in the training set and 600 cases (20.0 %) in the validation set. Another 300 cases were selected independently as the test set. All the images were evaluated and landmarked by two board-certified orthodontists as references. The head position of the LCR was classified by the angle between the Frankfort Horizontal (FH) plane and the true horizontal (HOR) plane, and a value within - 3°- 3° was considered normal. The YOLOv3 model based on the traditional fixed-point method and the modified ResNet50 model featuring a non-linear mapping residual network were constructed and evaluated. Heatmap was generated to visualize the performances.The modified ResNet50 model showed a superior classification accuracy of 96.0 %, higher than 93.5 % of the YOLOv3 model. The sensitivity&recall and specificity of the modified ResNet50 model were 0.959, 0.969, and those of the YOLOv3 model were 0.846, 0.916. The area under the curve (AUC) values of the modified ResNet50 and the YOLOv3 model were 0.985 ± 0.04 and 0.942 ± 0.042, respectively. Saliency maps demonstrated that the modified ResNet50 model considered the alignment of cervical vertebras, not just the periorbital and perinasal areas, as the YOLOv3 model did.The modified ResNet50 model outperformed the YOLOv3 model in classifying head position on LCRs and showed promising potential in facilitating making accurate diagnoses and optimal treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助嘻嘻嘻嗨学习采纳,获得10
14秒前
领导范儿应助老实的若山采纳,获得10
32秒前
TARCY完成签到,获得积分10
36秒前
41秒前
56秒前
57秒前
1分钟前
Cherry发布了新的文献求助10
1分钟前
1分钟前
1分钟前
黑环刺身发布了新的文献求助10
1分钟前
2分钟前
无名完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
Perion完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
科研通AI2S应助冷傲的薯片采纳,获得200
5分钟前
薄饼哥丶发布了新的文献求助10
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
6分钟前
五岳三鸟完成签到,获得积分10
6分钟前
6分钟前
6分钟前
科目三应助不喜采纳,获得10
6分钟前
xz完成签到 ,获得积分10
6分钟前
7分钟前
自信语雪完成签到 ,获得积分20
7分钟前
落寞念珍发布了新的文献求助10
7分钟前
10分钟前
拾柒完成签到 ,获得积分10
10分钟前
Orange应助安静的沉鱼采纳,获得30
10分钟前
追风完成签到,获得积分10
10分钟前
10分钟前
葱饼完成签到 ,获得积分10
11分钟前
red完成签到 ,获得积分10
11分钟前
慕青应助爱我嫉妒我采纳,获得10
11分钟前
爱我嫉妒我完成签到,获得积分20
11分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248759
求助须知:如何正确求助?哪些是违规求助? 2892223
关于积分的说明 8270205
捐赠科研通 2560417
什么是DOI,文献DOI怎么找? 1388980
科研通“疑难数据库(出版商)”最低求助积分说明 650955
邀请新用户注册赠送积分活动 627850