A method for heavy metal estimation in mining regions based on SMA-PCC-RF and reflectance spectroscopy

高光谱成像 随机森林 计算机科学 环境科学 相关系数 特征选择 遥感 人工智能 机器学习 地质学
作者
Yueyue Wang,Ruiqing Niu,Ming Hao,Guo Lin,Yingxu Xiao,Huaidan Zhang,Bangjie Fu
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:154: 110476-110476
标识
DOI:10.1016/j.ecolind.2023.110476
摘要

Heavy metal contamination has long been a concern of intense research within the field of environmental protection. The exacerbation of heavy metal pollution due to mineral resource over-exploitation and the implementation of agricultural modernization has further emphasized the need for rapid monitoring. Although traditional geochemical survey methods have been deemed reliable, they lack the ability to conduct non-destructive and rapid surveys of large areas due to their high cost, low real-time capability, and cumbersome operations. We collected 120 soil samples in the field using Xin'an County, Henan Province as the research region, and obtained hyperspectral curves and contents of the samples using the spectrometer and chemical analysis. After preprocessing the spectral curves, we used the slime mold algorithm (SMA) to preselect feature wavebands, and then the mathematically transformed method was used to improve their correlation. Next, we calculated the correlation coefficients of these wavebands with six heavy metals, and the final modeled wavebands were obtained through precise feature selection based on the criterion that the correlation coefficient’s absolute value exceeded 0.298. The inversion model was also established by using adaptive boosting (AdaBoost), gradient boosted decision tree (GBDT), random forest (RF), and partial least squares (PLS). The results indicated that SMA-PCC can effectively downscale the high-dimensional hyperspectral data and obtain the feature wavebands with a high contribution to the modeling. We also observed that the mathematical transformation method improved the relevance between heavy metal elements and spectra. Among the four models, RF showed better overall inversion accuracy for all heavy metals (i.e., Zn: RAdaBoost2=0.85,RGBDT2=0.56,RRF2=0.89,RPLS2=0.57). This paper showcases that the algorithm presented can provide meaningful technical guidance for the large-scale investigation and assessment of heavy metal levels in soil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婷婷发布了新的文献求助10
1秒前
Jupiter完成签到,获得积分10
1秒前
1秒前
meena完成签到,获得积分20
2秒前
科研通AI5应助明理的绿柏采纳,获得10
3秒前
4秒前
狂野的锦程完成签到,获得积分10
5秒前
momo发布了新的文献求助10
5秒前
6秒前
6秒前
RR发布了新的文献求助10
6秒前
7秒前
科研通AI5应助小夏饭桶采纳,获得10
7秒前
Duchung发布了新的文献求助10
9秒前
昕昕子发布了新的文献求助10
10秒前
11秒前
11秒前
水lunwen完成签到 ,获得积分10
11秒前
CodeCraft应助笑弯了眼采纳,获得10
12秒前
沉静晓丝发布了新的文献求助10
12秒前
dzll发布了新的文献求助10
12秒前
林思琦完成签到,获得积分10
12秒前
羊羊吃肉不吃草完成签到 ,获得积分10
13秒前
ybheart完成签到,获得积分10
15秒前
玉暖洋洋发布了新的文献求助10
15秒前
Duchung完成签到,获得积分10
15秒前
17秒前
我是老大应助guhuihaozi采纳,获得10
18秒前
菠萝水手完成签到,获得积分10
18秒前
zhangkele完成签到,获得积分10
18秒前
FashionBoy应助Ir采纳,获得10
19秒前
21秒前
Pweni完成签到,获得积分10
22秒前
绿色心情完成签到,获得积分10
24秒前
25秒前
铠甲勇士完成签到,获得积分10
25秒前
123321完成签到 ,获得积分10
26秒前
我是老大应助长青采纳,获得10
28秒前
nana发布了新的文献求助10
28秒前
绿色心情发布了新的文献求助10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174