Food flavor analysis 4.0: A cross-domain application of machine learning

风味 支持向量机 人工智能 机器学习 人工神经网络 模式识别(心理学) 随机森林 计算机科学 食品科学 数学 化学
作者
Xiangquan Zeng,Rui Cao,Yu Xi,Xuejie Li,Meihong Yu,Jingling Zhao,Jieyi Cheng,Jian Li
出处
期刊:Trends in Food Science and Technology [Elsevier BV]
卷期号:138: 116-125 被引量:51
标识
DOI:10.1016/j.tifs.2023.06.011
摘要

Food flavor analysis 4.0, originating from Industry 4.0, combines machine learning (ML) and food flavor analysis methods. Currently, food flavor analysis mainly depends on sensory evaluation, instrumental analysis, or a combination of both. In recent years, ML has been used effectively in the analysis and prediction of food flavor. However, few research teams have attempted to summarize the research progress in the combination of ML and food flavor analysis. This study focuses on the recent advances in food flavor analysis combined with supervised learning algorithms, including random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), neural network (NN), deep learning (DL), and hybrid algorithms. The application of ML in the determination of volatile aromatic compounds in meat, fruits, vegetables, and processed and fermented food products maintained a strong prediction stperformance. Both the back propagation neural network (BPNN) and KNN models performed well in the classification, with accuracy values higher than 90%. In contrast, the RF and SVM models delivered satisfactory performance in terms of classification and regression. Notably, the BPNN model achieved the highest classification accuracy in the analysis of extremely complex and similar samples, whereas the SVM model was considered an ideal regression algorithm when measuring a series of meat samples. In summary, food flavor analysis combined with ML has great potential for rapid detection of food additives, quality, and authenticity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XUHYBOR完成签到,获得积分10
1秒前
清蒸鱼发布了新的文献求助10
2秒前
2秒前
2秒前
4秒前
Magical发布了新的文献求助10
5秒前
ha哈发布了新的文献求助10
6秒前
粉条发布了新的文献求助10
7秒前
8秒前
8秒前
无花果应助蜡笔小新采纳,获得10
9秒前
清脆的灵煌完成签到,获得积分20
9秒前
vg完成签到,获得积分10
9秒前
11秒前
杨过和雕完成签到 ,获得积分10
11秒前
12秒前
13秒前
ding应助XUHYBOR采纳,获得10
15秒前
娟儿发布了新的文献求助10
15秒前
17秒前
liars发布了新的文献求助10
17秒前
Doctor_mao发布了新的文献求助20
17秒前
wanci应助超帅怜阳采纳,获得10
18秒前
澡雪发布了新的文献求助10
18秒前
传奇3应助欣慰的乌冬面采纳,获得20
20秒前
热爱生活的打工人完成签到,获得积分10
20秒前
lyt完成签到,获得积分20
22秒前
ZGZ123应助罗舒采纳,获得20
23秒前
LQ完成签到,获得积分10
23秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
28秒前
Owen应助研友_nvG5bZ采纳,获得10
29秒前
30秒前
罗舒给罗舒的求助进行了留言
30秒前
超帅怜阳发布了新的文献求助10
31秒前
32秒前
万能图书馆应助伶俐一曲采纳,获得10
33秒前
马亚飞发布了新的文献求助10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975516
求助须知:如何正确求助?哪些是违规求助? 3519930
关于积分的说明 11200130
捐赠科研通 3256278
什么是DOI,文献DOI怎么找? 1798183
邀请新用户注册赠送积分活动 877425
科研通“疑难数据库(出版商)”最低求助积分说明 806320