Radiomics of Late Gadolinium Enhancement Reveals Prognostic Value of Myocardial Scar Heterogeneity in Hypertrophic Cardiomyopathy

医学 肥厚性心肌病 心脏病学 内科学 逻辑回归 危险分层 比例危险模型 磁共振成像 心源性猝死 无线电技术 心肌病 放射科 心力衰竭
作者
Ahmed S. Fahmy,Ethan J. Rowin,Narjes Jaafar,Raymond H. Chan,Jennifer Rodriguez,Shiro Nakamori,Long Ngo,Silvia Pradella,Chiara Zocchi,Iacopo Olivotto,Warren J. Manning,Martin S. Maron,Reza Nezafat
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:17 (1): 16-27 被引量:42
标识
DOI:10.1016/j.jcmg.2023.05.003
摘要

Late gadolinium enhancement (LGE) scar burden by cardiac magnetic resonance is a major risk factor for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM). However, there is currently limited data on the incremental prognostic value of integrating myocardial LGE radiomics (ie, shape and texture features) into SCD risk stratification models. The purpose of this study was to investigate the incremental prognostic value of myocardial LGE radiomics beyond current European Society of Cardiology (ESC) and American College of Cardiology (ACC)/American Heart Association (AHA) models for SCD risk prediction in HCM. A total of 1,229 HCM patients (62% men; age 52 ± 16 years) from 3 medical centers were included. Left ventricular myocardial radiomic features were calculated from LGE images. Principal component analysis was used to reduce the radiomic features and calculate 3 principal radiomics (PrinRads). Cox and logistic regression analyses were then used to evaluate the significance of the extracted PrinRads of LGE images, alone or in combination with ESC or ACC/AHA models, to predict SCD risk. The ACC/AHA risk markers include LGE burden using a dichotomized 15% threshold of LV scar. SCD events occurred in 30 (2.4%) patients over a follow-up period of 49 ± 28 months. Risk prediction using PrinRads resulted in higher c-statistics than the ESC (0.69 vs 0.57; P = 0.02) and the ACC/AHA (0.69 vs 0.67; P = 0.75) models. Risk predictions were improved by combining the 3 PrinRads with ESC (0.73 vs 0.57; P < 0.01) or ACC/AHA (0.76 vs 0.67; P < 0.01) risk scores. The net reclassification index was improved by combining the PrinRads with ESC (0.25 [95% CI: 0.08-0.43]; P = 0.005) or ACC/AHA (0.05 [95% CI: −0.07 to 0.16]; P = 0.42) models. One PrinRad was a significant predictor of SCD risk (HR: 0.57 [95% CI: 0.39-0.84]; P = 0.01). LGE heterogeneity was a major component of PrinRads and a significant predictor of SCD risk (HR: 0.07 [95% CI: 0.01-0.75]; P = 0.03). Myocardial LGE radiomics are strongly associated with SCD risk in HCM and provide incremental risk stratification beyond current ESC or AHA/ACC risk models. Our proof-of-concept study warrants further validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘芮完成签到,获得积分10
2秒前
LAN完成签到,获得积分10
2秒前
游艺完成签到 ,获得积分10
3秒前
随缘来一个吧完成签到 ,获得积分10
9秒前
demom完成签到 ,获得积分10
10秒前
14秒前
虚幻怀莲完成签到,获得积分10
17秒前
Dong完成签到 ,获得积分10
17秒前
ran完成签到 ,获得积分10
17秒前
18秒前
龙眼完成签到,获得积分10
18秒前
芙瑞完成签到 ,获得积分10
19秒前
26秒前
ShellyMaya完成签到 ,获得积分10
29秒前
30秒前
夜神月发布了新的文献求助10
31秒前
stephenzh完成签到,获得积分10
33秒前
精明黄蜂完成签到 ,获得积分10
34秒前
机智的阿振完成签到,获得积分10
35秒前
吴律完成签到,获得积分10
36秒前
小潘完成签到 ,获得积分10
38秒前
哈哈完成签到 ,获得积分10
39秒前
one完成签到 ,获得积分10
44秒前
冷如松发布了新的文献求助20
44秒前
48秒前
CodeCraft应助科研通管家采纳,获得10
52秒前
布蓝图完成签到 ,获得积分10
53秒前
NexusExplorer应助科研通管家采纳,获得10
53秒前
53秒前
Summer完成签到 ,获得积分10
54秒前
鸭鸭完成签到 ,获得积分10
55秒前
冷如松完成签到,获得积分10
55秒前
56秒前
科研通AI5应助野椒搞科研采纳,获得30
56秒前
coolru完成签到,获得积分10
59秒前
fyy完成签到 ,获得积分10
1分钟前
1分钟前
朱光辉完成签到,获得积分10
1分钟前
夜神月完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212420
求助须知:如何正确求助?哪些是违规求助? 4388601
关于积分的说明 13664165
捐赠科研通 4249133
什么是DOI,文献DOI怎么找? 2331417
邀请新用户注册赠送积分活动 1329109
关于科研通互助平台的介绍 1282517