Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 数据库 业务 营销
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
11112321321完成签到 ,获得积分10
刚刚
Weilu完成签到 ,获得积分10
1秒前
sunwei完成签到,获得积分10
1秒前
2秒前
双shuang完成签到,获得积分10
2秒前
能干水蓝完成签到,获得积分10
3秒前
康轲完成签到,获得积分0
4秒前
怕触电的电源完成签到 ,获得积分10
4秒前
5秒前
叩叩发布了新的文献求助10
7秒前
如意书桃完成签到 ,获得积分10
7秒前
十五完成签到,获得积分10
9秒前
自信南霜完成签到 ,获得积分10
9秒前
可爱的小福宝完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
lin完成签到,获得积分10
13秒前
qsmei2020完成签到,获得积分10
13秒前
衢夭发布了新的文献求助10
14秒前
笔记本完成签到,获得积分0
15秒前
wxc完成签到 ,获得积分10
16秒前
科研通AI6应助caixiaoz采纳,获得10
16秒前
16秒前
16秒前
Wicky完成签到 ,获得积分10
17秒前
qin完成签到,获得积分10
17秒前
小杜完成签到,获得积分10
18秒前
超级襄完成签到 ,获得积分10
18秒前
勤奋完成签到 ,获得积分10
18秒前
20秒前
ZYN完成签到 ,获得积分10
20秒前
清新的易真完成签到,获得积分10
20秒前
Xiaoyan完成签到,获得积分10
21秒前
小巧的柚子完成签到,获得积分10
21秒前
keleboys完成签到 ,获得积分10
22秒前
22秒前
丘山发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651555
求助须知:如何正确求助?哪些是违规求助? 4785100
关于积分的说明 15054111
捐赠科研通 4810151
什么是DOI,文献DOI怎么找? 2572990
邀请新用户注册赠送积分活动 1528919
关于科研通互助平台的介绍 1487917