Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 数据库 业务 营销
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Patrick完成签到 ,获得积分10
刚刚
@斤斤计较发布了新的文献求助10
刚刚
卢彦冬完成签到,获得积分10
刚刚
傲娇的凡完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
wlh完成签到 ,获得积分10
2秒前
Frank完成签到,获得积分10
2秒前
2秒前
3秒前
傲娇的凡发布了新的文献求助10
3秒前
zgdzhj完成签到,获得积分10
4秒前
4秒前
4秒前
Waris发布了新的文献求助10
5秒前
浮游应助晴子采纳,获得10
6秒前
浮游应助长度2到采纳,获得10
7秒前
小宇发布了新的文献求助10
7秒前
QIQI发布了新的文献求助10
8秒前
梦思遗落完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
zyx完成签到,获得积分10
9秒前
简7发布了新的文献求助30
9秒前
佐zzz发布了新的文献求助10
10秒前
lxl发布了新的文献求助10
11秒前
11秒前
上官若男应助ZY采纳,获得10
11秒前
12秒前
13秒前
热情的远锋完成签到 ,获得积分10
14秒前
14秒前
浮游应助晴子采纳,获得10
15秒前
量子星尘发布了新的文献求助10
17秒前
兰兰不懒发布了新的文献求助10
18秒前
Hello应助佐zzz采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700