Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 数据库 业务 营销
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Victor完成签到 ,获得积分10
刚刚
joxes发布了新的文献求助10
1秒前
1秒前
Simon_chat完成签到,获得积分10
3秒前
传奇3应助BK采纳,获得10
3秒前
锵锵锵应助安静初瑶采纳,获得10
4秒前
我是老大应助Lusteri采纳,获得10
4秒前
6秒前
7秒前
浮游应助djbj2022采纳,获得10
8秒前
12秒前
优秀笑柳完成签到,获得积分10
12秒前
丘比特应助trussie采纳,获得10
12秒前
Cherish完成签到,获得积分10
13秒前
111完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
Owen应助马上飞上宇宙采纳,获得10
14秒前
善学以致用应助jc采纳,获得10
14秒前
16秒前
划分完成签到,获得积分10
16秒前
111发布了新的文献求助10
17秒前
fanfan完成签到,获得积分10
18秒前
周久完成签到 ,获得积分10
18秒前
ada发布了新的文献求助10
19秒前
小蘑菇应助小卢卢快闭嘴采纳,获得10
20秒前
彭tiantian完成签到 ,获得积分10
20秒前
22秒前
lucy发布了新的文献求助10
22秒前
24秒前
爱放屁的马邦德完成签到,获得积分10
24秒前
simdows发布了新的文献求助10
25秒前
Rain完成签到,获得积分10
26秒前
27秒前
lzcccccc完成签到,获得积分10
28秒前
ljc完成签到 ,获得积分10
29秒前
30秒前
科研通AI6应助纸箱采纳,获得10
31秒前
31秒前
original完成签到,获得积分10
32秒前
一向年光无限身完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741