Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 数据库 业务 营销
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀秀完成签到,获得积分10
1秒前
He完成签到,获得积分10
1秒前
小柠檬发布了新的文献求助10
1秒前
1秒前
zz完成签到,获得积分10
1秒前
可爱的函函应助wangwenzhe采纳,获得10
1秒前
微笑枫叶完成签到,获得积分10
2秒前
SciGPT应助ls采纳,获得10
3秒前
搜集达人应助He采纳,获得10
4秒前
4秒前
gqb发布了新的文献求助10
4秒前
典雅的俊驰应助体贴的嵩采纳,获得30
4秒前
6秒前
小邸发布了新的文献求助10
6秒前
科目三应助付书亚采纳,获得10
6秒前
7秒前
April发布了新的文献求助10
7秒前
jackscu完成签到,获得积分10
7秒前
星辰大海应助完美修杰采纳,获得10
8秒前
yzh1129发布了新的文献求助10
8秒前
顾矜应助小七啊采纳,获得10
8秒前
8秒前
beituo发布了新的文献求助10
10秒前
10秒前
香蕉觅云应助lilx2019采纳,获得10
10秒前
11秒前
12秒前
Owen应助奋斗水香采纳,获得10
12秒前
MAX发布了新的文献求助10
12秒前
XYL发布了新的文献求助10
12秒前
12秒前
Paperduoduo完成签到,获得积分10
13秒前
14秒前
科研通AI6应助lvlv采纳,获得10
15秒前
热情的乘风完成签到,获得积分10
15秒前
Lucy完成签到,获得积分10
15秒前
白色梨花完成签到,获得积分10
15秒前
yzh1129完成签到,获得积分10
16秒前
16秒前
大力超大力完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319859
求助须知:如何正确求助?哪些是违规求助? 4461827
关于积分的说明 13884803
捐赠科研通 4352481
什么是DOI,文献DOI怎么找? 2390628
邀请新用户注册赠送积分活动 1384354
关于科研通互助平台的介绍 1354131