Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 数据库 业务 营销
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助阿莫西西林采纳,获得10
1秒前
BaodaGUODNG发布了新的文献求助10
1秒前
上官若男应助XIA采纳,获得10
2秒前
2秒前
mimi完成签到,获得积分10
2秒前
耗材完成签到,获得积分10
4秒前
wang发布了新的文献求助10
4秒前
ddd发布了新的文献求助10
4秒前
5秒前
5秒前
ningning完成签到,获得积分10
5秒前
天天快乐应助面条采纳,获得10
5秒前
5秒前
研友_VZG7GZ应助大力的诗蕾采纳,获得10
6秒前
7秒前
7秒前
飞云发布了新的文献求助10
7秒前
CodeCraft应助橙子青采纳,获得10
8秒前
8秒前
青岛彭于晏完成签到 ,获得积分10
8秒前
Jerry1Li完成签到,获得积分20
9秒前
ddd完成签到,获得积分10
9秒前
Rui完成签到 ,获得积分10
10秒前
10秒前
撒旦asd发布了新的文献求助10
11秒前
飞飞完成签到,获得积分10
11秒前
孤独妙柏完成签到 ,获得积分10
11秒前
11秒前
lmg完成签到 ,获得积分10
12秒前
Orange应助莫123采纳,获得10
12秒前
曹官子完成签到 ,获得积分10
12秒前
李子完成签到,获得积分10
12秒前
BaodaGUODNG完成签到,获得积分20
13秒前
爆米花应助Jie采纳,获得10
14秒前
黄秋枫发布了新的文献求助10
14秒前
整箱完成签到 ,获得积分10
14秒前
15秒前
15秒前
wanci应助务实的犀牛采纳,获得10
16秒前
Finer完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684580
求助须知:如何正确求助?哪些是违规求助? 5037579
关于积分的说明 15184614
捐赠科研通 4843828
什么是DOI,文献DOI怎么找? 2596943
邀请新用户注册赠送积分活动 1549548
关于科研通互助平台的介绍 1508057