亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 数据库 业务 营销
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷酷芷蕾完成签到,获得积分10
刚刚
ddd发布了新的文献求助10
1秒前
天天快乐应助观澜采纳,获得10
3秒前
4秒前
5秒前
酷酷芷蕾发布了新的文献求助10
5秒前
懒癌晚期发布了新的文献求助10
8秒前
水水水发布了新的文献求助10
10秒前
10秒前
13秒前
香蕉觅云应助ddd采纳,获得10
16秒前
伪电气白兰完成签到,获得积分10
20秒前
25秒前
29秒前
ding应助Imstemcell采纳,获得10
36秒前
36秒前
37秒前
39秒前
39秒前
星星发布了新的文献求助10
42秒前
ououya完成签到 ,获得积分10
47秒前
隐形初雪完成签到 ,获得积分10
48秒前
48秒前
懒癌晚期发布了新的文献求助10
54秒前
Ocean完成签到,获得积分10
55秒前
husky完成签到 ,获得积分10
56秒前
w1x2123完成签到,获得积分10
57秒前
BowieHuang应助科研通管家采纳,获得10
59秒前
BowieHuang应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
科研通AI6应助舒心的初露采纳,获得10
59秒前
要减肥的春天完成签到,获得积分10
1分钟前
尼古拉斯铁柱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助星星采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590362
求助须知:如何正确求助?哪些是违规求助? 4674705
关于积分的说明 14795095
捐赠科研通 4631363
什么是DOI,文献DOI怎么找? 2532691
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617