Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 数据库 业务 营销
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ya完成签到,获得积分10
刚刚
董云云发布了新的文献求助10
刚刚
麻辣小龙虾完成签到,获得积分10
1秒前
爱听歌寄云完成签到 ,获得积分10
1秒前
Michael发布了新的文献求助20
1秒前
NexusExplorer应助小毕可乐采纳,获得10
1秒前
zency发布了新的文献求助10
2秒前
dzjin发布了新的文献求助10
2秒前
3秒前
enen发布了新的文献求助10
3秒前
3秒前
杨小野发布了新的文献求助10
3秒前
3秒前
weeklywh发布了新的文献求助10
4秒前
机灵的白羊完成签到 ,获得积分10
4秒前
活泼的莹完成签到,获得积分10
5秒前
天天扫大街完成签到,获得积分10
5秒前
5秒前
6秒前
瞿寒发布了新的文献求助10
6秒前
6秒前
Monicadd完成签到,获得积分10
6秒前
小马同志完成签到,获得积分10
7秒前
小阿俊发布了新的文献求助10
7秒前
韦小艺发布了新的文献求助10
8秒前
爱听歌的依秋完成签到,获得积分10
8秒前
希望天下0贩的0应助成太采纳,获得10
8秒前
yefeng发布了新的文献求助10
8秒前
xx完成签到,获得积分10
9秒前
enen完成签到,获得积分10
9秒前
10秒前
简单完成签到,获得积分10
10秒前
dzjin完成签到,获得积分10
10秒前
Hello应助多喝热水采纳,获得10
10秒前
汉堡包应助四件采纳,获得10
10秒前
10秒前
活泼的莹发布了新的文献求助10
10秒前
11秒前
风趣的惜天完成签到 ,获得积分10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648