Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 业务 营销 数据库
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助冷傲老头采纳,获得20
2秒前
3秒前
长长的名字完成签到 ,获得积分10
7秒前
斯文败类应助jila采纳,获得10
8秒前
11秒前
Hello应助嘿嘿采纳,获得10
12秒前
可可可可汁完成签到 ,获得积分10
15秒前
无奈的尔容完成签到,获得积分10
17秒前
Xiaohu完成签到,获得积分10
18秒前
XIEQ发布了新的文献求助10
19秒前
19秒前
科研通AI6应助yyanxuemin919采纳,获得10
21秒前
21秒前
23秒前
25秒前
一头猪发布了新的文献求助10
26秒前
Bazinga完成签到,获得积分10
26秒前
嗯嗯嗯完成签到,获得积分10
27秒前
懒鲸鱼给懒鲸鱼的求助进行了留言
27秒前
28秒前
嘿嘿发布了新的文献求助10
28秒前
able完成签到 ,获得积分10
29秒前
30秒前
嗯嗯嗯发布了新的文献求助10
31秒前
丘比特应助度ewf采纳,获得10
32秒前
丽丽丽发布了新的文献求助10
32秒前
yyanxuemin919发布了新的文献求助10
32秒前
蘑菇完成签到 ,获得积分10
35秒前
jam发布了新的文献求助10
35秒前
36秒前
烟花应助ccc采纳,获得10
37秒前
拉长的诗蕊完成签到,获得积分10
37秒前
38秒前
大妙妙完成签到 ,获得积分10
41秒前
41秒前
里里完成签到 ,获得积分10
42秒前
韩妙发布了新的文献求助10
43秒前
科研通AI6应助丽丽丽采纳,获得10
44秒前
太渊完成签到 ,获得积分10
44秒前
ccc发布了新的文献求助10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432