Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 数据库 业务 营销
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助sunshine采纳,获得10
刚刚
1秒前
romeo发布了新的文献求助10
2秒前
yxsxm完成签到,获得积分10
3秒前
迪歪歪应助阳光热狗采纳,获得20
3秒前
3秒前
4秒前
4秒前
4秒前
归尘发布了新的文献求助10
4秒前
stuffmatter应助茜茜采纳,获得50
4秒前
慕青应助过时的孤晴采纳,获得10
4秒前
安安安关注了科研通微信公众号
5秒前
6秒前
科研通AI6应助孙树人采纳,获得10
7秒前
7秒前
yxsxm发布了新的文献求助10
8秒前
romeo发布了新的文献求助10
8秒前
8秒前
8秒前
abb先生发布了新的文献求助10
9秒前
Owen应助王王采纳,获得10
9秒前
10秒前
药007完成签到,获得积分10
10秒前
Kai发布了新的文献求助10
10秒前
11秒前
1234发布了新的文献求助10
12秒前
彩色的紫南完成签到,获得积分10
12秒前
化学发布了新的文献求助10
12秒前
13秒前
妮妮完成签到 ,获得积分10
14秒前
14秒前
淡淡大山发布了新的文献求助10
15秒前
romeo发布了新的文献求助10
16秒前
16秒前
欢喜雪瑶发布了新的文献求助10
16秒前
16秒前
17秒前
benbengouj发布了新的文献求助10
17秒前
三月兔发布了新的文献求助10
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774