清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 数据库 业务 营销
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
lx完成签到,获得积分10
14秒前
123完成签到,获得积分10
23秒前
bkagyin应助香菜张采纳,获得10
33秒前
桃桃好困应助123采纳,获得10
34秒前
47秒前
深情安青应助郑蒸日上采纳,获得10
1分钟前
霸气雪珍完成签到,获得积分10
1分钟前
1分钟前
herococa应助科研通管家采纳,获得10
1分钟前
herococa应助科研通管家采纳,获得10
1分钟前
郑蒸日上发布了新的文献求助10
1分钟前
郑蒸日上完成签到,获得积分10
1分钟前
1分钟前
荣幸完成签到 ,获得积分10
1分钟前
年轻千愁完成签到 ,获得积分10
1分钟前
Clark完成签到,获得积分10
1分钟前
阿尔法贝塔完成签到 ,获得积分10
2分钟前
行走的猫完成签到 ,获得积分10
2分钟前
terryok完成签到 ,获得积分10
2分钟前
Jasperlee完成签到 ,获得积分10
2分钟前
3分钟前
Cat4pig完成签到 ,获得积分10
3分钟前
herococa应助科研通管家采纳,获得10
3分钟前
Derek完成签到,获得积分0
3分钟前
和谐的夏岚完成签到 ,获得积分10
3分钟前
3分钟前
JD完成签到 ,获得积分10
3分钟前
Amy发布了新的文献求助10
3分钟前
3分钟前
4分钟前
专注的觅云完成签到 ,获得积分10
4分钟前
4分钟前
Luna爱科研完成签到 ,获得积分10
4分钟前
左右发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
晓凡发布了新的文献求助10
4分钟前
蓝意完成签到,获得积分0
4分钟前
幸福的含雁完成签到,获得积分10
4分钟前
优秀棒棒糖完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658252
求助须知:如何正确求助?哪些是违规求助? 4819583
关于积分的说明 15081163
捐赠科研通 4816814
什么是DOI,文献DOI怎么找? 2577655
邀请新用户注册赠送积分活动 1532550
关于科研通互助平台的介绍 1491251