Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 数据库 业务 营销
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mercurius完成签到,获得积分10
刚刚
刚刚
刚刚
ganzhongxin完成签到,获得积分10
刚刚
12356完成签到,获得积分10
刚刚
1秒前
今后应助白华苍松采纳,获得10
1秒前
跳跃乘风发布了新的文献求助20
1秒前
不舍天真发布了新的文献求助20
2秒前
坚强的樱发布了新的文献求助10
2秒前
温暖以蓝发布了新的文献求助10
2秒前
2秒前
wanci应助幸福胡萝卜采纳,获得10
2秒前
2秒前
Ych发布了新的文献求助10
2秒前
gjy完成签到,获得积分10
3秒前
vision完成签到,获得积分10
3秒前
小小发布了新的文献求助10
3秒前
Katie完成签到,获得积分10
3秒前
LT发布了新的文献求助10
3秒前
4秒前
科研人完成签到,获得积分10
4秒前
FashionBoy应助彭彭采纳,获得10
4秒前
赤邪发布了新的文献求助10
5秒前
Owen应助lwei采纳,获得10
5秒前
shelly0621给shelly0621的求助进行了留言
5秒前
青木蓝完成签到,获得积分10
5秒前
5秒前
迅速泽洋完成签到,获得积分10
6秒前
dan1029完成签到,获得积分10
6秒前
小王完成签到,获得积分10
6秒前
李繁蕊发布了新的文献求助10
6秒前
7秒前
7秒前
隐形曼青应助hjj采纳,获得10
7秒前
susu完成签到,获得积分10
8秒前
9秒前
caicai发布了新的文献求助10
9秒前
无情的菲鹰完成签到,获得积分10
9秒前
兔兔完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762