Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 业务 营销 数据库
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阔达如松发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
留胡子的千青完成签到,获得积分20
1秒前
3秒前
关23完成签到 ,获得积分10
3秒前
3秒前
大鱼发布了新的文献求助10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
哦豁应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
慕青应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
6秒前
田様应助科研通管家采纳,获得10
6秒前
哦豁应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767182
求助须知:如何正确求助?哪些是违规求助? 5568519
关于积分的说明 15414583
捐赠科研通 4901198
什么是DOI,文献DOI怎么找? 2636869
邀请新用户注册赠送积分活动 1585074
关于科研通互助平台的介绍 1540240