已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 数据库 业务 营销
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爰爰完成签到,获得积分10
6秒前
Cookie发布了新的文献求助10
6秒前
kevinqpp完成签到,获得积分10
7秒前
ynl完成签到 ,获得积分10
8秒前
小秃子完成签到,获得积分10
10秒前
ycp完成签到,获得积分10
10秒前
orixero应助哈哈哈不知道呀采纳,获得10
10秒前
收皮皮完成签到 ,获得积分10
11秒前
11秒前
Akim应助Jinyang采纳,获得10
13秒前
伴夏完成签到 ,获得积分10
13秒前
wol007完成签到 ,获得积分10
14秒前
zsmj23完成签到 ,获得积分0
14秒前
紫霃发布了新的文献求助10
16秒前
积极的白羊完成签到 ,获得积分10
16秒前
Cookie完成签到,获得积分20
21秒前
英姑应助Hwj采纳,获得10
21秒前
打打应助hvgjgfjhgjh采纳,获得10
22秒前
23秒前
27秒前
杂货铺老板娘完成签到,获得积分10
28秒前
Jinyang发布了新的文献求助10
29秒前
Matberry完成签到 ,获得积分10
31秒前
32秒前
隔壁巷子里的劉完成签到 ,获得积分10
34秒前
34秒前
hvgjgfjhgjh完成签到,获得积分10
35秒前
坦率巧曼完成签到 ,获得积分10
35秒前
ding应助Jinyang采纳,获得10
35秒前
畅快自行车完成签到,获得积分10
36秒前
酷波er应助顺利巨人采纳,获得10
36秒前
尔白完成签到 ,获得积分10
36秒前
36秒前
hvgjgfjhgjh发布了新的文献求助10
37秒前
思源应助凡士林采纳,获得10
40秒前
紫霃完成签到,获得积分10
41秒前
42秒前
英姑应助TTTHANKS采纳,获得10
42秒前
呼呼完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573165
求助须知:如何正确求助?哪些是违规求助? 4659310
关于积分的说明 14724324
捐赠科研通 4599135
什么是DOI,文献DOI怎么找? 2524124
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464693