Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 数据库 业务 营销
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lin完成签到,获得积分10
刚刚
星星炒蛋完成签到,获得积分10
刚刚
张铭哲发布了新的文献求助10
刚刚
顾矜应助qqz采纳,获得10
1秒前
MY999完成签到,获得积分10
1秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
1秒前
1秒前
竹子发布了新的文献求助20
2秒前
2秒前
2秒前
共享精神应助hopeseason采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
liuchuck驳回了Ava应助
2秒前
嘿ha发布了新的文献求助10
3秒前
Tea233发布了新的文献求助10
3秒前
共享精神应助天气晴朗采纳,获得10
3秒前
4秒前
4秒前
无极微光应助哇哈哈哈采纳,获得20
5秒前
火山啊啊啊完成签到 ,获得积分10
5秒前
慕青应助刘国建郭菱香采纳,获得10
5秒前
tangyong发布了新的文献求助10
5秒前
荒年完成签到,获得积分10
5秒前
Hedy发布了新的文献求助10
5秒前
6秒前
雪白巨人完成签到,获得积分10
6秒前
6秒前
陶醉幻丝发布了新的文献求助10
6秒前
6秒前
CipherSage应助紧张的紫文采纳,获得10
6秒前
6秒前
6秒前
共享精神应助111采纳,获得10
7秒前
7秒前
pcr163应助bjcyqz采纳,获得150
7秒前
7秒前
HOAN应助prozac采纳,获得30
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590