Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI

计算机科学 分割 人工智能 市场细分 机器学习 深度学习 可扩展性 模式识别(心理学) 计算机视觉 数据库 业务 营销
作者
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-56 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_5
摘要

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data—e.g., additional lesions or structures of interest—collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains—i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttldhbds完成签到,获得积分10
刚刚
炖地瓜完成签到 ,获得积分10
1秒前
shanshan完成签到,获得积分20
1秒前
1秒前
华仔应助哟哟哟采纳,获得10
1秒前
liulongchao发布了新的文献求助10
2秒前
俊逸的续发布了新的文献求助10
2秒前
科研通AI2S应助JansonLin采纳,获得10
3秒前
乐空思应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
cc应助科研通管家采纳,获得20
3秒前
寻梦发布了新的文献求助10
3秒前
himon完成签到,获得积分10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
4秒前
长情的冰香完成签到,获得积分20
4秒前
布莱橙完成签到,获得积分10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
wills应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
Yvaine完成签到,获得积分10
6秒前
accept发布了新的文献求助30
6秒前
7秒前
酷炫忆梅完成签到,获得积分10
7秒前
谦让谷菱发布了新的文献求助10
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699375
求助须知:如何正确求助?哪些是违规求助? 5130580
关于积分的说明 15225579
捐赠科研通 4854309
什么是DOI,文献DOI怎么找? 2604571
邀请新用户注册赠送积分活动 1556027
关于科研通互助平台的介绍 1514304