DNA Synthetic Steganography Based on Conditional Probability Adaptive Coding

隐写分析技术 隐写术 计算机科学 信息隐藏 编码(社会科学) 隐写工具 人工智能 编码(内存) 数据挖掘 模式识别(心理学) 嵌入 数学 统计
作者
Chen‐Wei Huang,Zhongliang Yang,Zhiwen Hu,Jinshuai Yang,Haochen Qi,Jian Zhang,Lixin Zheng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4747-4759 被引量:2
标识
DOI:10.1109/tifs.2023.3285045
摘要

Steganography is an important technology for ensuring the security of cyberspace and the privacy of communications. In the last decade, emerging biotechnology has made it possible for DNA to be used as a promising steganographic carrier with high hidden capacity, high imperceptibility and high feasibility. However, severe statistical distortion might appear in steganographic carriers generated by existing DNA steganographies when they are compared with the natural ones. Therefore, efforts are being made to seek an advanced strategy to generate quasi-natural steganographic carriers with a strong anti-steganalysis capability. In this work, we first thoroughly analyze and model the numerous complicated statistical properties that exist in natural DNA chains, and then utilize the LSTM model to learn the serialized statistical properties. After obtaining an optimal sequence model that highly satisfies the statistical properties of natural DNA chains, we utilize the Adaptive Dynamic Grouping (ADG) algorithm to perform information hiding. In addition, we have carried out experimental analysis and verification from the perspectives of perceptual-imperceptibility, statistical-imperceptibility, and anti-steganalysis capability, all of which show that our proposed steganography method vastly outperforms previous DNA steganographic methods, taking a successful step towards achieving higher security DNA steganography.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直率新柔完成签到 ,获得积分10
1秒前
兴奋大船完成签到,获得积分10
1秒前
冷帅发布了新的文献求助30
2秒前
5秒前
6秒前
7秒前
9秒前
姚美阁完成签到 ,获得积分10
10秒前
11秒前
11秒前
海绵徐发布了新的文献求助10
13秒前
ucuppycake发布了新的文献求助10
13秒前
浮生完成签到 ,获得积分10
13秒前
周大炮发布了新的文献求助10
14秒前
15秒前
大个应助清零采纳,获得30
15秒前
天际繁星发布了新的文献求助10
16秒前
可乐发布了新的文献求助10
16秒前
17秒前
lsl发布了新的文献求助10
17秒前
chenchen完成签到,获得积分10
18秒前
健康的唯雪完成签到 ,获得积分10
18秒前
19秒前
Akim应助科研通管家采纳,获得30
20秒前
浅尝离白应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
sfef应助科研通管家采纳,获得10
20秒前
freedom完成签到 ,获得积分10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
girl发布了新的文献求助10
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
curtisness应助科研通管家采纳,获得10
20秒前
sfef应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
fanmo完成签到 ,获得积分10
21秒前
23秒前
葡萄成熟时完成签到,获得积分10
23秒前
顾矜应助ccc采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136101
求助须知:如何正确求助?哪些是违规求助? 2787001
关于积分的说明 7780169
捐赠科研通 2443122
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870