A contingency approach for time-cost trade-off in construction projects based on machine learning techniques

机器学习 计算机科学 人工智能 感知器 朴素贝叶斯分类器 独创性 运筹学 人工神经网络 支持向量机 工程类 创造力 政治学 法学
作者
Peipei Wang,Kun Wang,Yunhan Huang,Peter Fenn
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
被引量:4
标识
DOI:10.1108/ecam-11-2022-1104
摘要

Purpose Time-cost trade-off is normal conduct in construction projects when projects are expectedly late for delivery. Existing research on time-cost trade-off strategic management mostly focused on the technical calculation towards the optimal combination of activities to be accelerated, while the managerial aspects are mostly neglected. This paper aims to understand the managerial efforts necessary to prepare construction projects ready for an upcoming trade-off implementation. Design/methodology/approach A preliminary list of critical factors was first identified from the literature and verified by a Delphi survey. Quantitative data was then collected by a questionnaire survey to first shortlist the preliminary factors and quantify the predictive model with different machine learning algorithms, i.e. k-nearest neighbours (kNN), radial basis function (RBF), multiplayer perceptron (MLP), multinomial logistic regression (MLR), naïve Bayes classifier (NBC) and Bayesian belief networks (BBNs). Findings The model's independent variable importance ranking revealed that the top challenges faced were the realism of contractual obligation, contractor planning and control and client management and monitoring. Among the tested machine learning algorithms, multilayer perceptron was demonstrated to be the most suitable in this case. This model accuracy reached 96.5% with the training dataset and 95.6% with an independent test dataset and could be used as the contingency approach for time-cost trade-offs. Originality/value The identified factor list contributed to the theoretical explanation of the failed implementation in general and practical managerial improvement to better avoid such failure. In addition, the established predictive model provided an ad-hoc early warning and diagnostic tool to better ensure time-cost implementation success.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Zhang完成签到,获得积分10
2秒前
3秒前
吴帅完成签到,获得积分10
4秒前
笔记本应助xij采纳,获得20
4秒前
敏感的板栗完成签到 ,获得积分10
4秒前
5秒前
离枝发布了新的文献求助10
6秒前
Kuta完成签到,获得积分10
8秒前
3s发布了新的文献求助10
8秒前
上官若男应助一小部分我采纳,获得10
10秒前
10秒前
赘婿应助hwezhu采纳,获得10
10秒前
大模型应助奋斗Aa采纳,获得10
11秒前
科研通AI5应助吴帅采纳,获得10
11秒前
一叶知秋发布了新的文献求助10
11秒前
赘婿应助enjoy采纳,获得10
11秒前
田様应助离枝采纳,获得10
11秒前
12秒前
13秒前
14秒前
16秒前
波子发布了新的文献求助10
16秒前
17秒前
17秒前
Xiaoxiao应助2277938199采纳,获得10
17秒前
18秒前
liu15136110637完成签到,获得积分20
18秒前
陈秋发布了新的文献求助10
18秒前
18秒前
tianlongli完成签到,获得积分10
19秒前
科研小民工应助czm采纳,获得30
20秒前
20秒前
hwezhu发布了新的文献求助10
21秒前
21秒前
22秒前
万木发布了新的文献求助20
22秒前
吴帅发布了新的文献求助10
23秒前
nor完成签到,获得积分10
24秒前
24秒前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3681135
求助须知:如何正确求助?哪些是违规求助? 3233265
关于积分的说明 9807007
捐赠科研通 2944549
什么是DOI,文献DOI怎么找? 1614815
邀请新用户注册赠送积分活动 762368
科研通“疑难数据库(出版商)”最低求助积分说明 737366