The relationship between major depression and delirium: A two-sample Mendelian randomization analysis

孟德尔随机化 多效性 全基因组关联研究 谵妄 荟萃分析 观察研究 遗传关联 医学 心理学 内科学 遗传学 精神科 单核苷酸多态性 生物 遗传变异 基因型 表型 基因
作者
Jing Li,Jiachen Wang,Mingyi Yang,Gang Wang,Peng Xu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:338: 69-73 被引量:5
标识
DOI:10.1016/j.jad.2023.05.046
摘要

Major depression (MD) is a well-recognized risk factor for delirium. However, observational studies cannot provide direct evidence of causality between MD and delirium. This study explored the genetic causal association between MD and delirium using two-sample Mendelian randomization (MR). Genome-wide association study (GWAS) summary data for MD were obtained from the UK Biobank. GWAS summary data for delirium were obtained from the FinnGen Consortium. Inverse-variance weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode were used to perform the MR analysis. In addition, the Cochrane's Q test was used to detect heterogeneity in the MR results. Horizontal pleiotropy was detected using the MR-Egger intercept test and MR pleiotropy residual sum and outliers (MR-PRESSO) test. Leave-one-out analysis was used to investigate the sensitivity of this association. The IVW method showed that MD was an independent risk factor for delirium (P = 0.013). Horizontal pleiotropy was unlikely to bias causality (P > 0.05), and no evidence of heterogeneity was found between the genetic variants (P > 0.05). Finally, a leave-one-out test showed that this association was stable and robust. All participants included in the GWAS were of European ancestry. Due to database limitations, the MR analysis did not conduct stratified analyses for different countries, ethnicities, or age groups. We conducted a two-sample MR analysis and found the evidence of genetic causal association between MD and delirium.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小陈要发SCI完成签到 ,获得积分10
刚刚
cdercder应助尹天扬采纳,获得20
刚刚
称心铭完成签到 ,获得积分10
1秒前
cjh258819完成签到,获得积分10
2秒前
2秒前
xl完成签到 ,获得积分10
3秒前
3秒前
3秒前
liu完成签到 ,获得积分10
3秒前
3秒前
wdlc完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
hhh发布了新的文献求助30
6秒前
Romina完成签到,获得积分10
6秒前
你不知道发布了新的文献求助30
7秒前
困_zzzzzz完成签到 ,获得积分10
7秒前
科目三应助猪猪hero采纳,获得10
7秒前
调研昵称发布了新的文献求助10
8秒前
喜悦中道应助cjh258819采纳,获得10
8秒前
9秒前
小二郎应助小刘不笨采纳,获得10
9秒前
傲娇的云朵完成签到,获得积分10
9秒前
panda完成签到,获得积分10
10秒前
tangsuyun发布了新的文献求助10
10秒前
SYLH应助lx采纳,获得10
10秒前
anan_0528完成签到 ,获得积分10
10秒前
晓军发布了新的文献求助10
10秒前
李双艳发布了新的文献求助10
10秒前
wddddd完成签到,获得积分10
11秒前
11秒前
11秒前
感动的世平完成签到,获得积分10
13秒前
可爱的函函应助一一采纳,获得10
13秒前
13秒前
zhu完成签到,获得积分10
14秒前
俏皮的龙猫完成签到 ,获得积分10
14秒前
14秒前
SciGPT应助认真的一刀采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678