Using echocardiography based deep learning to early detect the infarct related artery in patients with acute coronary syndrome

医学 心脏病学 冠状动脉疾病 急性冠脉综合征 内科学 心肌梗塞 接收机工作特性
作者
WC Chang,Yongchao He
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:24 (Supplement_1)
标识
DOI:10.1093/ehjci/jead119.030
摘要

Abstract Funding Acknowledgements Type of funding sources: None. Background In patients with acute coronary syndrome (ACS), echocardiography detected regional wall motion abnormalities (RWMA) facilitates the recognition of ischemic heart disease and infarct related artery. Nevertheless, the differentiation of RWMA relies on the experiences of performers. Notably, in ACS patients without transmural infarction, RWMA may not be visible upon naked eyes. Purpose This study aims to investigate whether the application of 3D Convolution Neural Network could assist clinicians to differentiate patients with and without ACS based on echocardiography detected RWMA. Methods From 2018 to 2021, we collected echocardiographic imaging in 796 patients without ACS (Normal Control; NC), 759 with ACS and detectable RWMA (RWMA) and 267 with ACS but not detectable RWMA (uncertain; UC). The diagnosis of ACS was defined by the obstructive coronary arterial disease (CAD) in coronary angiography. Apical four, two and long chamber viewer were acquired and RWMAs were defined by cardiologists. Cardiac-Echo Net consists the techniques of 3D Convolution Neural Network and 3D MaxPooling. Results After exclusion echocardiographic imaging not qualified for analysis, we collected 40813 and 5928 images for establishing the model of Cardiac-Echo Net. In the final model, areas under the receiver operating characteristic curve are 98.9 and 89.2% for the training and validation, respectively. In the external validation dataset, the sensitivity was 81.8% and specificity was 81.6%. Notably, compared with cardiologists, Cardiac-Echo Net showed a superior accuracy in differentiating NC from RWMA (0.89 v.s. 0.815). Likewise, in differentiating NC from UC, Cardiac-Echo Net has a persistently higher accuracy than cardiologists (0.87 v.s. 0.65). Conclusions Superior to previous deep learning models, this novel one combined several neural-networking from different fields. Cardiac-Echo Net could spontaneously detect the subtle myocardial ischemia in ACS patients without eye-catching RWMA while further external validation is necessary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饶damei发布了新的文献求助10
刚刚
医只兔完成签到,获得积分10
刚刚
SCI发布了新的文献求助10
1秒前
神勇的小懒猪完成签到,获得积分10
1秒前
bkagyin应助活力小鸽子采纳,获得10
1秒前
无花果应助haoxuesheng采纳,获得10
2秒前
pluvia完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
扁桃体永不发炎完成签到,获得积分10
3秒前
7九完成签到,获得积分10
3秒前
Gong完成签到,获得积分10
4秒前
西红柿炒番茄应助sjc采纳,获得20
4秒前
烟花应助sjc采纳,获得10
4秒前
5秒前
sptyzl完成签到 ,获得积分10
5秒前
yoyofun完成签到 ,获得积分10
6秒前
6秒前
Abelyang发布了新的文献求助10
6秒前
Eurus发布了新的文献求助30
7秒前
幸福的冰珍完成签到,获得积分10
8秒前
8秒前
CJW完成签到,获得积分10
8秒前
9秒前
饶damei完成签到,获得积分10
9秒前
隐形曼青应助秃秃24采纳,获得10
10秒前
贺知什么书完成签到,获得积分10
10秒前
王小磊发布了新的文献求助10
11秒前
云散完成签到 ,获得积分10
11秒前
小二郎应助simon采纳,获得10
11秒前
12秒前
12秒前
12秒前
李健应助charles采纳,获得10
13秒前
轻松音响完成签到,获得积分10
13秒前
linxi完成签到,获得积分10
13秒前
同学甲发布了新的文献求助10
13秒前
dddy发布了新的文献求助10
14秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152657
求助须知:如何正确求助?哪些是违规求助? 2803891
关于积分的说明 7856198
捐赠科研通 2461571
什么是DOI,文献DOI怎么找? 1310444
科研通“疑难数据库(出版商)”最低求助积分说明 629205
版权声明 601782