Using echocardiography based deep learning to early detect the infarct related artery in patients with acute coronary syndrome

医学 心脏病学 冠状动脉疾病 急性冠脉综合征 内科学 心肌梗塞 接收机工作特性
作者
WC Chang,Yongchao He
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:24 (Supplement_1)
标识
DOI:10.1093/ehjci/jead119.030
摘要

Abstract Funding Acknowledgements Type of funding sources: None. Background In patients with acute coronary syndrome (ACS), echocardiography detected regional wall motion abnormalities (RWMA) facilitates the recognition of ischemic heart disease and infarct related artery. Nevertheless, the differentiation of RWMA relies on the experiences of performers. Notably, in ACS patients without transmural infarction, RWMA may not be visible upon naked eyes. Purpose This study aims to investigate whether the application of 3D Convolution Neural Network could assist clinicians to differentiate patients with and without ACS based on echocardiography detected RWMA. Methods From 2018 to 2021, we collected echocardiographic imaging in 796 patients without ACS (Normal Control; NC), 759 with ACS and detectable RWMA (RWMA) and 267 with ACS but not detectable RWMA (uncertain; UC). The diagnosis of ACS was defined by the obstructive coronary arterial disease (CAD) in coronary angiography. Apical four, two and long chamber viewer were acquired and RWMAs were defined by cardiologists. Cardiac-Echo Net consists the techniques of 3D Convolution Neural Network and 3D MaxPooling. Results After exclusion echocardiographic imaging not qualified for analysis, we collected 40813 and 5928 images for establishing the model of Cardiac-Echo Net. In the final model, areas under the receiver operating characteristic curve are 98.9 and 89.2% for the training and validation, respectively. In the external validation dataset, the sensitivity was 81.8% and specificity was 81.6%. Notably, compared with cardiologists, Cardiac-Echo Net showed a superior accuracy in differentiating NC from RWMA (0.89 v.s. 0.815). Likewise, in differentiating NC from UC, Cardiac-Echo Net has a persistently higher accuracy than cardiologists (0.87 v.s. 0.65). Conclusions Superior to previous deep learning models, this novel one combined several neural-networking from different fields. Cardiac-Echo Net could spontaneously detect the subtle myocardial ischemia in ACS patients without eye-catching RWMA while further external validation is necessary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西门放狗完成签到,获得积分10
刚刚
多金发布了新的文献求助10
1秒前
1秒前
我是老大应助逆旅如行人采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
慕子完成签到 ,获得积分10
5秒前
西门放狗发布了新的文献求助10
5秒前
6秒前
木头人应助许言采纳,获得10
6秒前
orangevv发布了新的文献求助10
6秒前
7秒前
freeaway完成签到,获得积分10
9秒前
六个核桃完成签到,获得积分10
10秒前
12秒前
bkagyin应助多金采纳,获得10
12秒前
yznfly应助xuejiajia采纳,获得30
13秒前
13秒前
14秒前
阴转晴完成签到,获得积分20
14秒前
16秒前
白斯特发布了新的文献求助10
17秒前
19秒前
19秒前
19秒前
22秒前
22秒前
田様应助笑对人生采纳,获得10
25秒前
阴转晴发布了新的文献求助10
27秒前
27秒前
医学牲发布了新的文献求助10
27秒前
善良的沛白完成签到,获得积分10
27秒前
28秒前
逆旅如行人完成签到,获得积分10
33秒前
不想上班发布了新的文献求助10
33秒前
安详忆梅发布了新的文献求助10
34秒前
38秒前
lt0217发布了新的文献求助10
39秒前
学学术术小小白白完成签到,获得积分10
40秒前
笑对人生发布了新的文献求助10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303