3-D Reconstruction and Measurement of Blade Profiles With Laser-Scanning Sensor via Multiview Registration Based on Dynamic Encoding of Feature-Coordinate Information

计算机视觉 人工智能 稳健性(进化) 计算机科学 特征(语言学) 坐标系 传感器融合 激光扫描 图像配准 编码(内存) 激光器 基因 图像(数学) 光学 物理 哲学 生物化学 化学 语言学
作者
Zongping Wang,Jie Dong,Ming Yin,Yangyang Zhu,Haotian Zheng,Luofeng Xie,Guofu Yin
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1663-1674 被引量:1
标识
DOI:10.1109/tii.2023.3280247
摘要

Currently, optical-based method provides a feasible means for blade reconstruction and measurement. However, as the key step, multi-view registration is still heavily reliant on the measurement system's motion stability and geometric accuracy. Moreover, the complex and high-reflective freeform surface of blades may result in both insufficient overlaps and less prominent overlap-area features between adjacent views, making accurate multi-view data alignment difficult. Thus, we propose a method to realize accurate 3-D reconstruction and measurement of blade profiles based on a scanning system with a laser-sensor and a coarse-to-fine registration strategy. Firstly, coarse alignment of the multi-view data is achieved by calibrating the system's rotational axis using the blade datum plane feature, which can provide a good initial value for the fine registration and improve the reconstruction efficiency. Then, a fine registration algorithm based on the dynamic encoding of feature-coordinate fusion information is proposed to refine the coarsely aligned data and reduce the effect of system motion error on registration accuracy. Here, the introduction of fusion information can effectively eliminate the redundant correspondences to continuously optimize the matching probability between multi-view data in each iteration, improving registration accuracy and efficiency. Finally, experiments on typical blades and comparison with the other fine registration algorithms demonstrate the accuracy and robustness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
无所吊谓发布了新的文献求助10
3秒前
4秒前
4秒前
领导范儿应助幸福广山采纳,获得10
5秒前
猪猪hero应助luzi采纳,获得10
6秒前
地表飞猪应助闫伊森采纳,获得10
7秒前
zxx5313491发布了新的文献求助10
9秒前
Ephemeral发布了新的文献求助10
10秒前
li完成签到,获得积分10
12秒前
13秒前
独特的友琴完成签到 ,获得积分10
13秒前
无花果应助知性的采珊采纳,获得150
13秒前
共享精神应助Youth采纳,获得10
13秒前
量子星尘发布了新的文献求助10
17秒前
pzhzy123完成签到,获得积分20
17秒前
闫伊森完成签到,获得积分10
20秒前
22秒前
上官若男应助祁尒采纳,获得10
24秒前
26秒前
28秒前
能干觅夏完成签到 ,获得积分10
30秒前
春风发布了新的文献求助10
31秒前
ssx发布了新的文献求助10
34秒前
任老三发布了新的文献求助10
35秒前
77发布了新的文献求助10
35秒前
激昂的野猪骑士完成签到,获得积分10
36秒前
春风完成签到,获得积分10
39秒前
Lucas应助ssx采纳,获得30
42秒前
fanmo完成签到 ,获得积分0
42秒前
任老三完成签到,获得积分10
44秒前
44秒前
47秒前
任善若完成签到 ,获得积分10
48秒前
Jasper应助Liudi采纳,获得10
51秒前
53秒前
阳光凡儿发布了新的文献求助20
54秒前
现代的访曼应助Dky采纳,获得20
57秒前
77完成签到,获得积分20
58秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110282
捐赠科研通 3233774
什么是DOI,文献DOI怎么找? 1787498
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172