亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Homo-interface and gradient N-doping cooperation to boost the rate capability of porous NaV8O20·nH2O nanoflake cathode in Zn-ion batteries

材料科学 阴极 吸附 兴奋剂 扩散 离子 化学工程 电极 化学物理 纳米技术 光电子学 电气工程 物理化学 热力学 物理 工程类 量子力学 化学
作者
Ze-Wu Xie,Shaofeng Liu,Canhong Wu,Ruiyi Cai,Na Li,Shaoming Huang
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:60: 102823-102823 被引量:13
标识
DOI:10.1016/j.ensm.2023.102823
摘要

Vanadium-based materials are expected to achieve high-rate capability with high energy density in Zn-ion batteries (ZIBs) due to the layered-structure and multi-electron redox mechanism. However, the high-rate charge/discharge capacity is usually restricted by limited charge storage active sites on material surface and poor electrode kinetics. Herein, homo-interfaces and built-in electric fields were constructed to boost the Zn2+ diffusion and electron transmission kinetics of NaV8O20·xH2O (NaVO) nanoflake cathodes, respectively, which cooperated to achieve high-rate charge/discharge capacity in ZIBs. Specifically, firstly, homo-interfacial NaVO nanoflakes were prepared, and then gradient N-doping was introduced from homo-interface to surface of NaVO due to the lower N-doping formation energies of interface than that of surface, which improved electrical conductivity and formed a build-in field to accelerate electron transmission; Moreover, there is a large difference between Zn2+ concentration in homo-interfaces and surfaces of the N-doped NaVO as the homo-interfaces with lower zinc adsorption energy are more conducive to the adsorption and aggregation of Zn2+ than that of the surface, which boost Zn2+ diffusion; Furthermore, numerous micropores were created to shorten ion transport pathways. These structural advantages enabled ultra-fast Zn-storage kinetics and excellent cycling performance of NaV8O20·xH2O in ZIBs, the reversible capacity can reach 417 mA h g−1 at 0.1 A g−1, and as high as ∼110 mA h g−1 at 100 A g−1 with capacity retention of 68.4% after 50,000 cycles. Dynamic analysis verifie that high capacitive capacity contributes most to the excellent performance, which can be ascribed to the structural advantages described above. The findings of this study provide new insights for designing Zn-ion storage materials with high-rate capability and long life.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摇摇小屋发布了新的文献求助10
1秒前
wanwan524完成签到 ,获得积分10
7秒前
7秒前
雨萱发布了新的文献求助10
13秒前
明亮的老四完成签到 ,获得积分10
17秒前
小新完成签到 ,获得积分10
21秒前
ding应助摇摇小屋采纳,获得10
28秒前
30秒前
倩倩完成签到 ,获得积分10
35秒前
36秒前
摇摇小屋完成签到,获得积分20
41秒前
Nina完成签到,获得积分10
45秒前
48秒前
50秒前
SMZ应助Nina采纳,获得10
52秒前
zero完成签到 ,获得积分10
52秒前
55秒前
苏紫梗桔完成签到 ,获得积分10
1分钟前
巴塞罗那小铁匠完成签到,获得积分10
1分钟前
麻辣香锅发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI6应助eliauk采纳,获得10
1分钟前
2分钟前
史育川发布了新的文献求助10
2分钟前
Smithjiang完成签到,获得积分10
2分钟前
2分钟前
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
2分钟前
天天快乐应助叽叽采纳,获得10
2分钟前
LJL完成签到 ,获得积分10
2分钟前
2分钟前
麻辣香锅发布了新的文献求助10
2分钟前
科研通AI6应助麻辣香锅采纳,获得10
2分钟前
慕青应助李铃锐采纳,获得10
3分钟前
喻初原完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650843
求助须知:如何正确求助?哪些是违规求助? 4781799
关于积分的说明 15052655
捐赠科研通 4809623
什么是DOI,文献DOI怎么找? 2572434
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487437