Homo-interface and gradient N-doping cooperation to boost the rate capability of porous NaV8O20·nH2O nanoflake cathode in Zn-ion batteries

材料科学 阴极 吸附 兴奋剂 扩散 离子 化学工程 电极 化学物理 纳米技术 光电子学 电气工程 物理化学 热力学 物理 工程类 量子力学 化学
作者
Ze-Wu Xie,Shaofeng Liu,Canhong Wu,Ruiyi Cai,Na Li,Shaoming Huang
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:60: 102823-102823 被引量:13
标识
DOI:10.1016/j.ensm.2023.102823
摘要

Vanadium-based materials are expected to achieve high-rate capability with high energy density in Zn-ion batteries (ZIBs) due to the layered-structure and multi-electron redox mechanism. However, the high-rate charge/discharge capacity is usually restricted by limited charge storage active sites on material surface and poor electrode kinetics. Herein, homo-interfaces and built-in electric fields were constructed to boost the Zn2+ diffusion and electron transmission kinetics of NaV8O20·xH2O (NaVO) nanoflake cathodes, respectively, which cooperated to achieve high-rate charge/discharge capacity in ZIBs. Specifically, firstly, homo-interfacial NaVO nanoflakes were prepared, and then gradient N-doping was introduced from homo-interface to surface of NaVO due to the lower N-doping formation energies of interface than that of surface, which improved electrical conductivity and formed a build-in field to accelerate electron transmission; Moreover, there is a large difference between Zn2+ concentration in homo-interfaces and surfaces of the N-doped NaVO as the homo-interfaces with lower zinc adsorption energy are more conducive to the adsorption and aggregation of Zn2+ than that of the surface, which boost Zn2+ diffusion; Furthermore, numerous micropores were created to shorten ion transport pathways. These structural advantages enabled ultra-fast Zn-storage kinetics and excellent cycling performance of NaV8O20·xH2O in ZIBs, the reversible capacity can reach 417 mA h g−1 at 0.1 A g−1, and as high as ∼110 mA h g−1 at 100 A g−1 with capacity retention of 68.4% after 50,000 cycles. Dynamic analysis verifie that high capacitive capacity contributes most to the excellent performance, which can be ascribed to the structural advantages described above. The findings of this study provide new insights for designing Zn-ion storage materials with high-rate capability and long life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WQ完成签到,获得积分10
1秒前
搜集达人应助认真跳跳糖采纳,获得10
3秒前
Tana发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
Jasper应助精明谷采纳,获得10
5秒前
ShuXU发布了新的文献求助10
5秒前
领导范儿应助果果采纳,获得10
6秒前
CodeCraft应助siyan156采纳,获得10
6秒前
6秒前
星辰大海应助猪猪hero采纳,获得10
6秒前
7秒前
隐形书白发布了新的文献求助10
7秒前
8秒前
干净白容完成签到,获得积分20
8秒前
8秒前
11秒前
QQQ发布了新的文献求助10
12秒前
跳跃山柳完成签到 ,获得积分10
12秒前
猪猪hero发布了新的文献求助10
13秒前
Tung发布了新的文献求助10
13秒前
逃跑快人一步完成签到 ,获得积分10
13秒前
YYJ发布了新的文献求助10
14秒前
15秒前
15秒前
微笑的尔蓝完成签到,获得积分10
15秒前
15秒前
hamster发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
18秒前
18秒前
大个应助QQQ采纳,获得10
18秒前
传奇3应助ali采纳,获得10
18秒前
MchemG应助科研通管家采纳,获得10
19秒前
MchemG应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
19秒前
czh应助科研通管家采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052