Homo-interface and gradient N-doping cooperation to boost the rate capability of porous NaV8O20·nH2O nanoflake cathode in Zn-ion batteries

材料科学 阴极 吸附 兴奋剂 扩散 离子 化学工程 电极 化学物理 纳米技术 光电子学 电气工程 物理化学 热力学 物理 工程类 量子力学 化学
作者
Ze-Wu Xie,Shaofeng Liu,Canhong Wu,Ruiyi Cai,Na Li,Shaoming Huang
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:60: 102823-102823 被引量:13
标识
DOI:10.1016/j.ensm.2023.102823
摘要

Vanadium-based materials are expected to achieve high-rate capability with high energy density in Zn-ion batteries (ZIBs) due to the layered-structure and multi-electron redox mechanism. However, the high-rate charge/discharge capacity is usually restricted by limited charge storage active sites on material surface and poor electrode kinetics. Herein, homo-interfaces and built-in electric fields were constructed to boost the Zn2+ diffusion and electron transmission kinetics of NaV8O20·xH2O (NaVO) nanoflake cathodes, respectively, which cooperated to achieve high-rate charge/discharge capacity in ZIBs. Specifically, firstly, homo-interfacial NaVO nanoflakes were prepared, and then gradient N-doping was introduced from homo-interface to surface of NaVO due to the lower N-doping formation energies of interface than that of surface, which improved electrical conductivity and formed a build-in field to accelerate electron transmission; Moreover, there is a large difference between Zn2+ concentration in homo-interfaces and surfaces of the N-doped NaVO as the homo-interfaces with lower zinc adsorption energy are more conducive to the adsorption and aggregation of Zn2+ than that of the surface, which boost Zn2+ diffusion; Furthermore, numerous micropores were created to shorten ion transport pathways. These structural advantages enabled ultra-fast Zn-storage kinetics and excellent cycling performance of NaV8O20·xH2O in ZIBs, the reversible capacity can reach 417 mA h g−1 at 0.1 A g−1, and as high as ∼110 mA h g−1 at 100 A g−1 with capacity retention of 68.4% after 50,000 cycles. Dynamic analysis verifie that high capacitive capacity contributes most to the excellent performance, which can be ascribed to the structural advantages described above. The findings of this study provide new insights for designing Zn-ion storage materials with high-rate capability and long life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北望发布了新的文献求助10
刚刚
2秒前
3秒前
吧唧一笑的go关注了科研通微信公众号
5秒前
WangXinkui完成签到,获得积分10
7秒前
东耦完成签到,获得积分10
7秒前
8秒前
hbutsj完成签到,获得积分10
10秒前
KK完成签到,获得积分10
12秒前
careyzhou发布了新的文献求助10
13秒前
中原第一深情完成签到,获得积分10
13秒前
小洪俊熙发布了新的文献求助10
14秒前
北望完成签到,获得积分20
14秒前
Lee完成签到 ,获得积分10
15秒前
科研狗完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
romeo发布了新的文献求助10
21秒前
妖孽宇完成签到,获得积分10
23秒前
简简单单完成签到,获得积分10
23秒前
550190946发布了新的文献求助10
23秒前
25秒前
111完成签到,获得积分10
25秒前
zhubin完成签到 ,获得积分10
25秒前
27秒前
田南松发布了新的文献求助10
30秒前
搬砖美少女完成签到,获得积分10
30秒前
nn发布了新的文献求助10
31秒前
7ohnny完成签到,获得积分10
32秒前
apckkk完成签到 ,获得积分10
34秒前
深情安青应助550190946采纳,获得10
35秒前
36秒前
37秒前
jbq完成签到 ,获得积分20
37秒前
YM完成签到,获得积分10
39秒前
生动柔发布了新的文献求助10
39秒前
大旭完成签到 ,获得积分10
40秒前
Fn完成签到 ,获得积分10
42秒前
zero完成签到,获得积分10
44秒前
瘦瘦谷兰完成签到,获得积分10
44秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022