Discovery and validation of combined biomarkers for the diagnosis of esophageal intraepithelial neoplasia and esophageal squamous cell carcinoma

食管癌 食管 医学 食管肿瘤 食管鳞状细胞癌 上皮内瘤变 肿瘤科 癌症 病理 内科学 癌症研究 前列腺
作者
Ya-Qi Zheng,Haihua Huang,Shuxian Chen,Xiu‐E Xu,Zhi-Mao Li,Yuehong Li,Su-Zuan Chen,Wen-Xiong Luo,Yi Guo,Wei Liu,En‐Min Li,Li‐Yan Xu
出处
期刊:Journal of Proteomics [Elsevier BV]
卷期号:304: 105233-105233 被引量:2
标识
DOI:10.1016/j.jprot.2024.105233
摘要

Early diagnosis and intervention of esophageal squamous cell carcinoma (ESCC) can improve the prognosis. The purpose of this study was to identify biomarkers for ESCC and esophageal precancerous lesions (intraepithelial neoplasia, IEN). Based on the proteomic and genomic data of esophageal tissue including previously reported data, up-regulated proteins with copy number amplification in esophageal cancer were screened as candidate biomarkers. Five proteins, including KDM2A, RAD9A, ECT2, CYHR1 and TONSL, were confirmed by immunohistochemistry on ESCC and normal esophagus (NE). Then, we investigated the expression of 5 proteins in 236 participants (60 NEs, 93 IENs and 83 ESCCs) which were randomly divided into training set and test set. When distinguishing ESCC from NE, the area under curve (AUC) of the multiprotein model was 0.940 in the training set, while the lowest AUC of a protein was 0.735. In the test set, the results were similar. When distinguishing ESCC from IEN or distinguishing IEN from NE, the diagnostic efficiency of the multi-protein models were also improved compared with that of single protein. Our findings suggest that combined detection of KDM2A, RAD9A, ECT2, CYHR1 and TONSL can be used as potential biomarkers for the early diagnosis of ESCC and precancerous lesion development prediction. Candidate biomarkers including KDM2A, RAD9A, ECT2, CYHR1 and TONSL screened by integrating genomic and proteomic data from the esophagus can be used as potential biomarkers for the early diagnosis of esophageal squamous cell carcinoma and precancerous lesion development prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳如老狗发布了新的文献求助10
刚刚
刚刚
太牛的GGB发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
12345完成签到,获得积分10
2秒前
落寞灵安发布了新的文献求助10
2秒前
卢玥沅发布了新的文献求助10
2秒前
Gwinn发布了新的文献求助10
3秒前
慢羊羊发布了新的文献求助10
3秒前
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
宋启文发布了新的文献求助10
3秒前
mtt应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
27发布了新的文献求助10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
wg发布了新的文献求助10
4秒前
子车茗应助科研通管家采纳,获得20
4秒前
orixero应助科研通管家采纳,获得10
4秒前
amanda应助科研通管家采纳,获得20
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得20
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
一叶知秋应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Jasper应助陈琳采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933396
求助须知:如何正确求助?哪些是违规求助? 4201613
关于积分的说明 13054063
捐赠科研通 3975660
什么是DOI,文献DOI怎么找? 2178529
邀请新用户注册赠送积分活动 1194810
关于科研通互助平台的介绍 1106200