Discovery and validation of combined biomarkers for the diagnosis of esophageal intraepithelial neoplasia and esophageal squamous cell carcinoma

食管癌 食管 医学 食管肿瘤 食管鳞状细胞癌 癌前病变 上皮内瘤变 免疫组织化学 肿瘤科 癌症 病理 病变 蛋白质组学 食道疾病 内科学 疾病 基底细胞 癌症研究 细胞 生物标志物 胃肠病学 诊断生物标志物 曲线下面积 原位癌
作者
Ya-Qi Zheng,Haihua Huang,Shuxian Chen,Xiu‐E Xu,Zhi-Mao Li,Yuehong Li,Su-Zuan Chen,Wen-Xiong Luo,Yi Guo,Wei Liu,En‐Min Li,Li‐Yan Xu
出处
期刊:Journal of Proteomics [Elsevier BV]
卷期号:304: 105233-105233 被引量:5
标识
DOI:10.1016/j.jprot.2024.105233
摘要

Early diagnosis and intervention of esophageal squamous cell carcinoma (ESCC) can improve the prognosis. The purpose of this study was to identify biomarkers for ESCC and esophageal precancerous lesions (intraepithelial neoplasia, IEN). Based on the proteomic and genomic data of esophageal tissue including previously reported data, up-regulated proteins with copy number amplification in esophageal cancer were screened as candidate biomarkers. Five proteins, including KDM2A, RAD9A, ECT2, CYHR1 and TONSL, were confirmed by immunohistochemistry on ESCC and normal esophagus (NE). Then, we investigated the expression of 5 proteins in 236 participants (60 NEs, 93 IENs and 83 ESCCs) which were randomly divided into training set and test set. When distinguishing ESCC from NE, the area under curve (AUC) of the multiprotein model was 0.940 in the training set, while the lowest AUC of a protein was 0.735. In the test set, the results were similar. When distinguishing ESCC from IEN or distinguishing IEN from NE, the diagnostic efficiency of the multi-protein models were also improved compared with that of single protein. Our findings suggest that combined detection of KDM2A, RAD9A, ECT2, CYHR1 and TONSL can be used as potential biomarkers for the early diagnosis of ESCC and precancerous lesion development prediction. Candidate biomarkers including KDM2A, RAD9A, ECT2, CYHR1 and TONSL screened by integrating genomic and proteomic data from the esophagus can be used as potential biomarkers for the early diagnosis of esophageal squamous cell carcinoma and precancerous lesion development prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助不想长大采纳,获得50
刚刚
echo完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
李小舞完成签到,获得积分10
2秒前
alkdwx发布了新的文献求助10
2秒前
2秒前
2秒前
航1发布了新的文献求助10
2秒前
WendyWen完成签到,获得积分10
2秒前
丘比特应助风清扬采纳,获得10
3秒前
荷属安发布了新的文献求助10
3秒前
A溶大美噶完成签到,获得积分10
3秒前
3秒前
酒酿莓莓完成签到 ,获得积分10
3秒前
4秒前
4秒前
汉堡包应助cxz采纳,获得10
4秒前
Jasper应助董吧啦采纳,获得10
4秒前
朱旭完成签到,获得积分20
4秒前
5秒前
gu123完成签到,获得积分10
6秒前
7秒前
tricky发布了新的文献求助10
7秒前
坠儿狼发布了新的文献求助10
7秒前
丘比特应助大头麦穗鱼采纳,获得10
7秒前
彭于晏应助prof.zhang采纳,获得10
7秒前
浮游应助alkdwx采纳,获得10
7秒前
NexusExplorer应助alkdwx采纳,获得10
7秒前
昵称发布了新的文献求助10
7秒前
雷雷发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
庞伟泽发布了新的文献求助10
9秒前
云墨发布了新的文献求助10
9秒前
超浓抹茶椰完成签到,获得积分10
9秒前
10秒前
赵家慧完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193179
求助须知:如何正确求助?哪些是违规求助? 4375858
关于积分的说明 13627334
捐赠科研通 4230610
什么是DOI,文献DOI怎么找? 2320518
邀请新用户注册赠送积分活动 1318864
关于科研通互助平台的介绍 1269183