Na2FeP2O7 cathode material exhibits great promise in sodium ion batteries (SIBs), due to its low cost and high structural durability. Nevertheless, the intrinsically poor electronic conductivity and sluggish Na+ diffusion kinetics of Na2FeP2O7 hinder its practical application. Herein, a synergistic cooperation of continuous amorphous carbon layer and optimized Co doping strategy is proposed to design high-performance SIB cathode (Co-doped Na2FeP2O7/C) via in-situ sol–gel method, where Co integration significantly enhances both the electronic conductivity and the Na+ diffusion kinetics, as confirmed by the combination of ex/in-situ characterizations and density functional theory calculations. Valuably, the synergy of amorphous carbon layer and appropriate Co doping restrains the structure stress to "zero-strain", Which remains beneficial for 0.10Co-NFO@C to display a high capacity of 96.12 mAh g-1 at 0.05C and a high-rate capacity of 61.75 mAh g-1 at 60C with the capacity retention of 79.9% after 5000 cycles. Moreover, optimized Co-doped Na2FeP2O7/C also shows outstanding cycling performance and rate capability when assembled into full batteries (hard carbon as the anode), demonstrating a reversible capacity of ∼110.9 mAh g-1 at 50 mA g−1, and a respectable capacity retention of 78.0% at 500 mA g−1 for 500 cycles. The strategy inspires new advances towards zero-strained cathode materials for high performance SIBs.