Large Language Models as Molecular Design Engines

计算机科学
作者
Debjyoti Bhattacharya,Harrison J. Cassady,Michael A. Hickner,Wesley F. Reinhart
标识
DOI:10.26434/chemrxiv-2024-n0l8q-v2
摘要

The design of small molecules is crucial for technological applications ranging from drug discovery to energy storage. Due to the vast design space available to modern synthetic chemistry, the community has increasingly sought to use data-driven and machine learning approaches to navigate this space. Although generative machine learning methods have recently shown potential for computational molecular design, their use is hindered by complex training procedures, and they often fail to generate valid and unique molecules. In this context, pre-trained Large Language Models (LLMs) have emerged as potential tools for molecular design, as they appear to be capable of creating and modifying molecules based on simple instructions provided through natural language prompts. In this work, we show that the Claude 3 Opus LLM can read, write, and modify molecules according to prompts, with an impressive 97% valid and unique molecules. By quantifying these modifications in a low-dimensional latent space, we systematically evaluate the model’s behavior under different prompting conditions. Notably, the model is able to perform guided molecular generation when asked to manipulate the electronic structure of molecules using simple, natural-language prompts. Our findings highlight the potential of LLMs as powerful and versatile molecular design engines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zrrr完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
纯白发布了新的文献求助10
3秒前
wwrz驳回了yufanhui应助
3秒前
木子雨完成签到 ,获得积分10
4秒前
weifeng0824发布了新的文献求助10
4秒前
zhang发布了新的文献求助10
5秒前
牛牛完成签到,获得积分20
5秒前
科研通AI6应助陈辰晨采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
张土豆发布了新的文献求助10
7秒前
阿萨姆发布了新的文献求助10
7秒前
ding应助bolin采纳,获得10
7秒前
李多多发布了新的文献求助10
7秒前
YanDongXu发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
酷波er应助Aurinse采纳,获得10
9秒前
11秒前
tennisgirl发布了新的文献求助10
12秒前
纯白完成签到,获得积分20
13秒前
13秒前
风华笔墨发布了新的文献求助10
13秒前
16秒前
JamesPei应助甜筒采纳,获得10
16秒前
xuxiaoyan发布了新的文献求助10
17秒前
研友_VZG7GZ应助敏感的秋凌采纳,获得10
19秒前
搜集达人应助乐观的海莲采纳,获得10
19秒前
高大千山完成签到 ,获得积分10
20秒前
英姑应助成就的书包采纳,获得10
21秒前
21秒前
风华笔墨完成签到,获得积分10
21秒前
小七发布了新的文献求助10
21秒前
打打应助张土豆采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
wanci应助飘逸善若采纳,获得30
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704982
求助须知:如何正确求助?哪些是违规求助? 5160109
关于积分的说明 15243509
捐赠科研通 4858841
什么是DOI,文献DOI怎么找? 2607448
邀请新用户注册赠送积分活动 1558519
关于科研通互助平台的介绍 1516177