Large Language Models as Molecular Design Engines

计算机科学
作者
Debjyoti Bhattacharya,Harrison J. Cassady,Michael A. Hickner,Wesley F. Reinhart
标识
DOI:10.26434/chemrxiv-2024-n0l8q-v2
摘要

The design of small molecules is crucial for technological applications ranging from drug discovery to energy storage. Due to the vast design space available to modern synthetic chemistry, the community has increasingly sought to use data-driven and machine learning approaches to navigate this space. Although generative machine learning methods have recently shown potential for computational molecular design, their use is hindered by complex training procedures, and they often fail to generate valid and unique molecules. In this context, pre-trained Large Language Models (LLMs) have emerged as potential tools for molecular design, as they appear to be capable of creating and modifying molecules based on simple instructions provided through natural language prompts. In this work, we show that the Claude 3 Opus LLM can read, write, and modify molecules according to prompts, with an impressive 97% valid and unique molecules. By quantifying these modifications in a low-dimensional latent space, we systematically evaluate the model’s behavior under different prompting conditions. Notably, the model is able to perform guided molecular generation when asked to manipulate the electronic structure of molecules using simple, natural-language prompts. Our findings highlight the potential of LLMs as powerful and versatile molecular design engines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crazysnowking完成签到,获得积分10
刚刚
邓佳鑫Alan应助ller采纳,获得10
刚刚
1秒前
1秒前
2秒前
李健应助谢大喵采纳,获得10
2秒前
领导范儿应助Zzzzz采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
传奇3应助ivying0209采纳,获得10
4秒前
科研通AI6应助大白兔爱吃糖采纳,获得200
6秒前
邓布利多发布了新的文献求助10
7秒前
8秒前
洋洋完成签到,获得积分10
8秒前
8秒前
crazysnowking发布了新的文献求助10
8秒前
65421发布了新的文献求助10
9秒前
9秒前
10秒前
12秒前
12秒前
Zzzzz发布了新的文献求助10
12秒前
乐乐应助nwds采纳,获得10
13秒前
13秒前
慕青应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得30
13秒前
哈哈哈发布了新的文献求助10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
一一应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得30
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
诚心的寻真完成签到,获得积分20
14秒前
华仔应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633215
求助须知:如何正确求助?哪些是违规求助? 4728654
关于积分的说明 14985295
捐赠科研通 4791156
什么是DOI,文献DOI怎么找? 2558773
邀请新用户注册赠送积分活动 1519196
关于科研通互助平台的介绍 1479516