Large Language Models as Molecular Design Engines

计算机科学
作者
Debjyoti Bhattacharya,Harrison J. Cassady,Michael A. Hickner,Wesley F. Reinhart
标识
DOI:10.26434/chemrxiv-2024-n0l8q-v2
摘要

The design of small molecules is crucial for technological applications ranging from drug discovery to energy storage. Due to the vast design space available to modern synthetic chemistry, the community has increasingly sought to use data-driven and machine learning approaches to navigate this space. Although generative machine learning methods have recently shown potential for computational molecular design, their use is hindered by complex training procedures, and they often fail to generate valid and unique molecules. In this context, pre-trained Large Language Models (LLMs) have emerged as potential tools for molecular design, as they appear to be capable of creating and modifying molecules based on simple instructions provided through natural language prompts. In this work, we show that the Claude 3 Opus LLM can read, write, and modify molecules according to prompts, with an impressive 97% valid and unique molecules. By quantifying these modifications in a low-dimensional latent space, we systematically evaluate the model’s behavior under different prompting conditions. Notably, the model is able to perform guided molecular generation when asked to manipulate the electronic structure of molecules using simple, natural-language prompts. Our findings highlight the potential of LLMs as powerful and versatile molecular design engines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的谷蓝完成签到,获得积分10
刚刚
深呼吸发布了新的文献求助10
刚刚
shanlu完成签到,获得积分10
刚刚
Orange应助繁星与北斗采纳,获得10
1秒前
1秒前
黄耀完成签到,获得积分10
1秒前
1秒前
abc1122完成签到,获得积分10
2秒前
wyh发布了新的文献求助10
2秒前
劣根完成签到,获得积分10
2秒前
何相逢完成签到,获得积分0
2秒前
LEE123完成签到,获得积分10
2秒前
感性的剑愁完成签到,获得积分10
3秒前
凉凉应助dtcao采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
卡卡西发布了新的文献求助10
3秒前
3秒前
长风与海浪完成签到 ,获得积分10
4秒前
MAOJCFK发布了新的文献求助10
5秒前
5秒前
faiting完成签到,获得积分10
5秒前
勤奋的天亦完成签到,获得积分10
5秒前
kiyo_v完成签到,获得积分10
5秒前
邓代容发布了新的文献求助10
6秒前
无私的芹应助yuelsy0117采纳,获得10
6秒前
ZHYChen完成签到,获得积分10
6秒前
huk发布了新的文献求助10
6秒前
ZJJ静完成签到,获得积分10
7秒前
董竹君完成签到,获得积分10
7秒前
俭朴的天曼完成签到,获得积分10
7秒前
Lucas应助顺心的翠丝采纳,获得10
8秒前
李田田完成签到,获得积分20
8秒前
8秒前
义气乐儿发布了新的文献求助10
8秒前
宅心仁厚完成签到 ,获得积分10
9秒前
9秒前
骑猪看日落完成签到,获得积分10
9秒前
冥冥之极为昭昭完成签到,获得积分10
9秒前
繁荣的又夏完成签到,获得积分10
10秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027