This study explored the effect of constant-current pulsed electric field thawing (CC-T) on the proteins and water-holding capacity of pork. Fresh meat (FM), and frozen meat after constant-voltage thawing (CV-T), air thawing (AT) and water immersion thawing (WT) were considered as controls. The results indicated that CC-T had a higher thawing rate than conventional thawing during ice-crystal melting stage (-5 to -1 °C). It also showed a lower water migration and thawing loss, maintaining pH and shear force closer to FM. Meanwhile, CC-T decreased myoglobin oxidation, resulting in a favorable surface color. The results of protein solubility, differential scanning calorimetry, total sulfhydryl, carbonyl and surface hydrophobicity demonstrated that CC-T reduced myofibrillar protein oxidative denaturation by suppressing the formation of disulfide and carbonyl bonds, thus enhancing solubility and thermal stability. Additionally, microstructural observation found that CC-T maintained a relatively intact muscle fiber structure by reducing muscle damage and myosin filament denaturation.