已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Vehicle detection algorithm for foggy based on improved AOD-Net

算法 计算机科学
作者
Liyan Zhang,J. Y. Zhao,Zhengang Lang,L I Fang
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
卷期号:46 (14): 2696-2705 被引量:2
标识
DOI:10.1177/01423312241248490
摘要

To strengthen the safety monitoring of foggy road traffic and maintain the safety of vehicle driving on foggy roads, image dehazing algorithms are used to improve the clarity of road images detected in foggy environments, thereby improving the detection ability and monitoring efficiency of intelligent transportation systems for vehicle targets. Due to the low accuracy of vehicle detection and serious problem of missed detections in haze environments, this paper proposes an improved All-in-One Dehazing Network (AOD-Net) algorithm for detecting foggy vehicles, which adds batch normalization (BN) layers after each layer of convolution in AOD-Net, accelerating the convergence of the model and controlling overfitting. To enhance image detail information, an effective pyramid-shaped PSA attention module is embedded to extract richer feature information, enrich model representation, and improve the loss function to a multi-scale structural similarity (MS-SSIM) + L1 mixed loss function, thereby improving the quality, brightness, and contrast of dehazing images. Compared with current image dehazing algorithms, the dehazing quality of our algorithm is superior to other dehazing algorithms, such as dark channel prior (DCP), Dehaze-Net, and Fusion Feature Attention Network (FFA-Net). Compared with AOD-Net, the improved algorithm has increased the peak signal-to-noise ratio by 3.23 dB. At the same time, after the improved AOD-Net image dehazing processing, YOLOv7 object detection was performed and experimentally validated on a real foggy dataset. The results showed that compared with the previous method, it had better recognition performance in foggy detection and recognition, and higher detection accuracy for vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
猪猪hero发布了新的文献求助10
3秒前
可研小冲发布了新的文献求助10
4秒前
无心发布了新的文献求助10
6秒前
汉堡包应助白色的猫猫采纳,获得10
7秒前
无情麦片完成签到 ,获得积分10
9秒前
9秒前
12秒前
亮亮完成签到,获得积分10
12秒前
西瓜完成签到,获得积分10
12秒前
老师一怒之下给我十篇nuture完成签到,获得积分10
14秒前
Aan完成签到 ,获得积分10
14秒前
淡然完成签到,获得积分10
14秒前
希希完成签到 ,获得积分10
14秒前
科研通AI2S应助可研小冲采纳,获得10
14秒前
15秒前
LZK发布了新的文献求助10
16秒前
噗噗完成签到,获得积分20
16秒前
19秒前
CodeCraft应助阔达梦蕊采纳,获得10
19秒前
21秒前
21秒前
李爱国应助lwxlvji采纳,获得10
22秒前
小二郎应助闫上走采纳,获得10
22秒前
噜噜发布了新的文献求助10
22秒前
达不溜完成签到 ,获得积分10
22秒前
无心发布了新的文献求助10
22秒前
浮游应助戴衡霞采纳,获得10
23秒前
兴奋的白桃完成签到,获得积分20
25秒前
噗噗发布了新的文献求助30
27秒前
ZXRGXY发布了新的文献求助10
27秒前
28秒前
Akim应助刘二狗采纳,获得10
29秒前
31秒前
乐正亦寒完成签到 ,获得积分10
32秒前
32秒前
在水一方应助绿泡泡采纳,获得10
34秒前
34秒前
典雅怀寒完成签到,获得积分20
35秒前
共享精神应助RHJ采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197317
求助须知:如何正确求助?哪些是违规求助? 4378660
关于积分的说明 13636710
捐赠科研通 4234455
什么是DOI,文献DOI怎么找? 2322730
邀请新用户注册赠送积分活动 1320896
关于科研通互助平台的介绍 1271517