Vehicle detection algorithm for foggy based on improved AOD-Net

算法 计算机科学
作者
Liyan Zhang,J. Y. Zhao,Zhengang Lang,L I Fang
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
卷期号:46 (14): 2696-2705 被引量:2
标识
DOI:10.1177/01423312241248490
摘要

To strengthen the safety monitoring of foggy road traffic and maintain the safety of vehicle driving on foggy roads, image dehazing algorithms are used to improve the clarity of road images detected in foggy environments, thereby improving the detection ability and monitoring efficiency of intelligent transportation systems for vehicle targets. Due to the low accuracy of vehicle detection and serious problem of missed detections in haze environments, this paper proposes an improved All-in-One Dehazing Network (AOD-Net) algorithm for detecting foggy vehicles, which adds batch normalization (BN) layers after each layer of convolution in AOD-Net, accelerating the convergence of the model and controlling overfitting. To enhance image detail information, an effective pyramid-shaped PSA attention module is embedded to extract richer feature information, enrich model representation, and improve the loss function to a multi-scale structural similarity (MS-SSIM) + L1 mixed loss function, thereby improving the quality, brightness, and contrast of dehazing images. Compared with current image dehazing algorithms, the dehazing quality of our algorithm is superior to other dehazing algorithms, such as dark channel prior (DCP), Dehaze-Net, and Fusion Feature Attention Network (FFA-Net). Compared with AOD-Net, the improved algorithm has increased the peak signal-to-noise ratio by 3.23 dB. At the same time, after the improved AOD-Net image dehazing processing, YOLOv7 object detection was performed and experimentally validated on a real foggy dataset. The results showed that compared with the previous method, it had better recognition performance in foggy detection and recognition, and higher detection accuracy for vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pliciyir发布了新的文献求助10
1秒前
小草发布了新的文献求助10
1秒前
完美世界应助jtrfdf采纳,获得10
1秒前
bkagyin应助虚心的清采纳,获得10
1秒前
1秒前
冰蓝完成签到 ,获得积分10
1秒前
1秒前
七七发布了新的文献求助10
1秒前
gyf发布了新的文献求助10
2秒前
2秒前
CipherSage应助张丁采纳,获得10
2秒前
SciGPT应助浮浮世世采纳,获得80
2秒前
如意绾绾发布了新的文献求助30
3秒前
3秒前
4秒前
科研废物发布了新的文献求助10
4秒前
123456qqqq完成签到,获得积分10
4秒前
5秒前
shan完成签到,获得积分10
6秒前
SCI666驳回了所所应助
6秒前
韩韩发布了新的文献求助10
6秒前
6秒前
7秒前
缥缈幻翠完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
无极微光应助ziyue采纳,获得20
8秒前
9秒前
9秒前
风华漫舞发布了新的文献求助10
9秒前
慕青应助汤飞柏采纳,获得10
10秒前
酚羟基装醇完成签到,获得积分10
10秒前
搞怪彩虹发布了新的文献求助10
10秒前
11秒前
11秒前
YSSY发布了新的文献求助10
11秒前
白白发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526571
求助须知:如何正确求助?哪些是违规求助? 4616631
关于积分的说明 14554856
捐赠科研通 4554863
什么是DOI,文献DOI怎么找? 2496123
邀请新用户注册赠送积分活动 1476503
关于科研通互助平台的介绍 1448046