Vehicle detection algorithm for foggy based on improved AOD-Net

算法 计算机科学
作者
Liyan Zhang,J. Y. Zhao,Zhengang Lang,L I Fang
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
卷期号:46 (14): 2696-2705 被引量:2
标识
DOI:10.1177/01423312241248490
摘要

To strengthen the safety monitoring of foggy road traffic and maintain the safety of vehicle driving on foggy roads, image dehazing algorithms are used to improve the clarity of road images detected in foggy environments, thereby improving the detection ability and monitoring efficiency of intelligent transportation systems for vehicle targets. Due to the low accuracy of vehicle detection and serious problem of missed detections in haze environments, this paper proposes an improved All-in-One Dehazing Network (AOD-Net) algorithm for detecting foggy vehicles, which adds batch normalization (BN) layers after each layer of convolution in AOD-Net, accelerating the convergence of the model and controlling overfitting. To enhance image detail information, an effective pyramid-shaped PSA attention module is embedded to extract richer feature information, enrich model representation, and improve the loss function to a multi-scale structural similarity (MS-SSIM) + L1 mixed loss function, thereby improving the quality, brightness, and contrast of dehazing images. Compared with current image dehazing algorithms, the dehazing quality of our algorithm is superior to other dehazing algorithms, such as dark channel prior (DCP), Dehaze-Net, and Fusion Feature Attention Network (FFA-Net). Compared with AOD-Net, the improved algorithm has increased the peak signal-to-noise ratio by 3.23 dB. At the same time, after the improved AOD-Net image dehazing processing, YOLOv7 object detection was performed and experimentally validated on a real foggy dataset. The results showed that compared with the previous method, it had better recognition performance in foggy detection and recognition, and higher detection accuracy for vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子焱发布了新的文献求助10
刚刚
1秒前
哈哈哈完成签到,获得积分10
1秒前
aaaaa发布了新的文献求助10
1秒前
张雯雯发布了新的文献求助10
1秒前
大个应助小猪猪采纳,获得10
1秒前
1秒前
2秒前
2秒前
木子发布了新的文献求助20
2秒前
2秒前
2秒前
耍酷含芙发布了新的文献求助10
3秒前
第七兵团司令完成签到,获得积分10
3秒前
早中晚完成签到,获得积分10
3秒前
半醉哥完成签到,获得积分10
3秒前
爱可依完成签到 ,获得积分10
4秒前
丘比特应助DL采纳,获得10
4秒前
1335804518发布了新的文献求助10
4秒前
5秒前
5秒前
文献下载神器完成签到,获得积分10
5秒前
mufulee发布了新的文献求助30
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
科研通AI2S应助嘿哈采纳,获得10
7秒前
Hello应助jeff采纳,获得10
7秒前
wanghao婷发布了新的文献求助10
7秒前
科研通AI6应助rob采纳,获得10
7秒前
Akim应助典雅的俊驰采纳,获得10
8秒前
8秒前
打打应助心绪采纳,获得10
8秒前
copper完成签到,获得积分10
8秒前
buta完成签到,获得积分10
8秒前
9秒前
monster完成签到 ,获得积分10
9秒前
浩瀚完成签到,获得积分10
9秒前
仙女完成签到 ,获得积分10
9秒前
遇见无铭发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871