Vehicle detection algorithm for foggy based on improved AOD-Net

算法 计算机科学
作者
Liyan Zhang,J. Y. Zhao,Zhengang Lang,L I Fang
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
卷期号:46 (14): 2696-2705
标识
DOI:10.1177/01423312241248490
摘要

To strengthen the safety monitoring of foggy road traffic and maintain the safety of vehicle driving on foggy roads, image dehazing algorithms are used to improve the clarity of road images detected in foggy environments, thereby improving the detection ability and monitoring efficiency of intelligent transportation systems for vehicle targets. Due to the low accuracy of vehicle detection and serious problem of missed detections in haze environments, this paper proposes an improved All-in-One Dehazing Network (AOD-Net) algorithm for detecting foggy vehicles, which adds batch normalization (BN) layers after each layer of convolution in AOD-Net, accelerating the convergence of the model and controlling overfitting. To enhance image detail information, an effective pyramid-shaped PSA attention module is embedded to extract richer feature information, enrich model representation, and improve the loss function to a multi-scale structural similarity (MS-SSIM) + L1 mixed loss function, thereby improving the quality, brightness, and contrast of dehazing images. Compared with current image dehazing algorithms, the dehazing quality of our algorithm is superior to other dehazing algorithms, such as dark channel prior (DCP), Dehaze-Net, and Fusion Feature Attention Network (FFA-Net). Compared with AOD-Net, the improved algorithm has increased the peak signal-to-noise ratio by 3.23 dB. At the same time, after the improved AOD-Net image dehazing processing, YOLOv7 object detection was performed and experimentally validated on a real foggy dataset. The results showed that compared with the previous method, it had better recognition performance in foggy detection and recognition, and higher detection accuracy for vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狗狗发布了新的文献求助10
1秒前
曹志毅完成签到 ,获得积分10
1秒前
fifteen完成签到,获得积分10
2秒前
Allen完成签到,获得积分10
2秒前
2秒前
今后应助小混蛋采纳,获得10
3秒前
落后乐荷完成签到,获得积分10
3秒前
3秒前
4秒前
stuckinrain完成签到,获得积分10
4秒前
Yin完成签到,获得积分10
4秒前
4秒前
6秒前
zzzz完成签到,获得积分10
6秒前
orixero应助刻苦的宛白采纳,获得50
7秒前
何以解忧发布了新的文献求助30
7秒前
7秒前
水上书发布了新的文献求助10
7秒前
爆米花应助Kane采纳,获得10
8秒前
傅寒天完成签到,获得积分10
8秒前
fifteen发布了新的文献求助20
8秒前
光123完成签到 ,获得积分10
9秒前
科研通AI2S应助体贴花卷采纳,获得10
9秒前
华仔应助狗狗采纳,获得10
9秒前
小木安华发布了新的文献求助10
9秒前
9秒前
赵哈哈发布了新的文献求助10
10秒前
10秒前
xuan777关注了科研通微信公众号
11秒前
cr发布了新的文献求助10
11秒前
12秒前
12秒前
15秒前
wuludie发布了新的文献求助10
17秒前
17秒前
刻苦的宛白完成签到,获得积分10
19秒前
19秒前
20秒前
水上书完成签到,获得积分10
22秒前
BX发布了新的文献求助10
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Microbiology and Health Benefits of Traditional Alcoholic Beverages 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979984
求助须知:如何正确求助?哪些是违规求助? 3524121
关于积分的说明 11219921
捐赠科研通 3261562
什么是DOI,文献DOI怎么找? 1800703
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232