Vehicle detection algorithm for foggy based on improved AOD-Net

算法 计算机科学
作者
L. Q. Zhang,J. Y. Zhao,Zhengang Lang,L I Fang
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
标识
DOI:10.1177/01423312241248490
摘要

To strengthen the safety monitoring of foggy road traffic and maintain the safety of vehicle driving on foggy roads, image dehazing algorithms are used to improve the clarity of road images detected in foggy environments, thereby improving the detection ability and monitoring efficiency of intelligent transportation systems for vehicle targets. Due to the low accuracy of vehicle detection and serious problem of missed detections in haze environments, this paper proposes an improved All-in-One Dehazing Network (AOD-Net) algorithm for detecting foggy vehicles, which adds batch normalization (BN) layers after each layer of convolution in AOD-Net, accelerating the convergence of the model and controlling overfitting. To enhance image detail information, an effective pyramid-shaped PSA attention module is embedded to extract richer feature information, enrich model representation, and improve the loss function to a multi-scale structural similarity (MS-SSIM) + L1 mixed loss function, thereby improving the quality, brightness, and contrast of dehazing images. Compared with current image dehazing algorithms, the dehazing quality of our algorithm is superior to other dehazing algorithms, such as dark channel prior (DCP), Dehaze-Net, and Fusion Feature Attention Network (FFA-Net). Compared with AOD-Net, the improved algorithm has increased the peak signal-to-noise ratio by 3.23 dB. At the same time, after the improved AOD-Net image dehazing processing, YOLOv7 object detection was performed and experimentally validated on a real foggy dataset. The results showed that compared with the previous method, it had better recognition performance in foggy detection and recognition, and higher detection accuracy for vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lili发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
有川洋一完成签到 ,获得积分10
2秒前
kelaibing完成签到,获得积分10
3秒前
Shirley给于芋菊的求助进行了留言
3秒前
sxiao18应助独特的鹅采纳,获得10
3秒前
情怀应助栗子鱼采纳,获得10
3秒前
mmx发布了新的文献求助10
4秒前
勤劳的沛山完成签到,获得积分10
4秒前
范晓阳发布了新的文献求助10
4秒前
呆鸥发布了新的文献求助30
4秒前
5秒前
jun完成签到 ,获得积分10
6秒前
思睿拜完成签到 ,获得积分10
6秒前
6秒前
爆浆麻薯519完成签到,获得积分10
8秒前
时见麓完成签到 ,获得积分10
8秒前
娆疆第一深情完成签到,获得积分10
8秒前
orixero应助追寻白桃采纳,获得10
8秒前
呜呼啦呼发布了新的文献求助200
9秒前
9秒前
情怀应助萧水白采纳,获得100
10秒前
西扬完成签到,获得积分10
10秒前
10秒前
zyw发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
无花果应助草莓熊采纳,获得10
12秒前
13秒前
君知完成签到,获得积分10
14秒前
14秒前
14秒前
白华苍松发布了新的文献求助20
14秒前
精神是块骨头完成签到,获得积分10
15秒前
粥粥完成签到,获得积分10
15秒前
15秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147695
求助须知:如何正确求助?哪些是违规求助? 2798784
关于积分的说明 7831337
捐赠科研通 2455622
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587