亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Vehicle detection algorithm for foggy based on improved AOD-Net

算法 计算机科学
作者
Liyan Zhang,J. Y. Zhao,Zhengang Lang,L I Fang
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
卷期号:46 (14): 2696-2705
标识
DOI:10.1177/01423312241248490
摘要

To strengthen the safety monitoring of foggy road traffic and maintain the safety of vehicle driving on foggy roads, image dehazing algorithms are used to improve the clarity of road images detected in foggy environments, thereby improving the detection ability and monitoring efficiency of intelligent transportation systems for vehicle targets. Due to the low accuracy of vehicle detection and serious problem of missed detections in haze environments, this paper proposes an improved All-in-One Dehazing Network (AOD-Net) algorithm for detecting foggy vehicles, which adds batch normalization (BN) layers after each layer of convolution in AOD-Net, accelerating the convergence of the model and controlling overfitting. To enhance image detail information, an effective pyramid-shaped PSA attention module is embedded to extract richer feature information, enrich model representation, and improve the loss function to a multi-scale structural similarity (MS-SSIM) + L1 mixed loss function, thereby improving the quality, brightness, and contrast of dehazing images. Compared with current image dehazing algorithms, the dehazing quality of our algorithm is superior to other dehazing algorithms, such as dark channel prior (DCP), Dehaze-Net, and Fusion Feature Attention Network (FFA-Net). Compared with AOD-Net, the improved algorithm has increased the peak signal-to-noise ratio by 3.23 dB. At the same time, after the improved AOD-Net image dehazing processing, YOLOv7 object detection was performed and experimentally validated on a real foggy dataset. The results showed that compared with the previous method, it had better recognition performance in foggy detection and recognition, and higher detection accuracy for vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助springovo采纳,获得10
2秒前
yellow完成签到 ,获得积分10
6秒前
TXZ06完成签到,获得积分10
9秒前
山野完成签到 ,获得积分10
11秒前
22秒前
springovo发布了新的文献求助10
27秒前
29秒前
TonyLee完成签到,获得积分10
38秒前
sangsang发布了新的文献求助10
43秒前
铜锣湾新之助完成签到 ,获得积分10
48秒前
科目三应助sangsang采纳,获得10
52秒前
星辰大海应助springovo采纳,获得10
53秒前
牟凤发布了新的文献求助10
59秒前
1分钟前
1分钟前
1分钟前
springovo发布了新的文献求助10
1分钟前
lydia完成签到,获得积分10
1分钟前
顏顏完成签到 ,获得积分10
1分钟前
卧镁铀钳完成签到 ,获得积分10
1分钟前
1分钟前
cyhcyh发布了新的文献求助10
1分钟前
CipherSage应助springovo采纳,获得10
1分钟前
深情安青应助cyhcyh采纳,获得10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
smdoctor发布了新的文献求助10
2分钟前
2分钟前
酷炫荷花发布了新的文献求助10
2分钟前
2分钟前
springovo发布了新的文献求助10
2分钟前
webmaster完成签到,获得积分10
2分钟前
酷炫荷花完成签到,获得积分10
3分钟前
JamesPei应助洒脱鲲采纳,获得10
3分钟前
洒脱鲲完成签到,获得积分10
3分钟前
哇哈完成签到 ,获得积分10
3分钟前
大模型应助springovo采纳,获得10
4分钟前
冷水完成签到,获得积分10
4分钟前
4分钟前
湘湘完成签到 ,获得积分10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775914
求助须知:如何正确求助?哪些是违规求助? 3321516
关于积分的说明 10205971
捐赠科研通 3036587
什么是DOI,文献DOI怎么找? 1666340
邀请新用户注册赠送积分活动 797368
科研通“疑难数据库(出版商)”最低求助积分说明 757801