已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Vehicle detection algorithm for foggy based on improved AOD-Net

算法 计算机科学
作者
Liyan Zhang,J. Y. Zhao,Zhengang Lang,L I Fang
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
卷期号:46 (14): 2696-2705 被引量:2
标识
DOI:10.1177/01423312241248490
摘要

To strengthen the safety monitoring of foggy road traffic and maintain the safety of vehicle driving on foggy roads, image dehazing algorithms are used to improve the clarity of road images detected in foggy environments, thereby improving the detection ability and monitoring efficiency of intelligent transportation systems for vehicle targets. Due to the low accuracy of vehicle detection and serious problem of missed detections in haze environments, this paper proposes an improved All-in-One Dehazing Network (AOD-Net) algorithm for detecting foggy vehicles, which adds batch normalization (BN) layers after each layer of convolution in AOD-Net, accelerating the convergence of the model and controlling overfitting. To enhance image detail information, an effective pyramid-shaped PSA attention module is embedded to extract richer feature information, enrich model representation, and improve the loss function to a multi-scale structural similarity (MS-SSIM) + L1 mixed loss function, thereby improving the quality, brightness, and contrast of dehazing images. Compared with current image dehazing algorithms, the dehazing quality of our algorithm is superior to other dehazing algorithms, such as dark channel prior (DCP), Dehaze-Net, and Fusion Feature Attention Network (FFA-Net). Compared with AOD-Net, the improved algorithm has increased the peak signal-to-noise ratio by 3.23 dB. At the same time, after the improved AOD-Net image dehazing processing, YOLOv7 object detection was performed and experimentally validated on a real foggy dataset. The results showed that compared with the previous method, it had better recognition performance in foggy detection and recognition, and higher detection accuracy for vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的汉堡完成签到,获得积分10
刚刚
DOCTORLI完成签到,获得积分10
刚刚
1秒前
迅速的丑完成签到,获得积分10
1秒前
wanci应助研友_Z3NGvn采纳,获得10
2秒前
小慧完成签到 ,获得积分10
2秒前
万能图书馆应助红茶猫采纳,获得10
3秒前
3秒前
大大小小发布了新的文献求助10
4秒前
4秒前
开心可乐不脆皮完成签到,获得积分20
5秒前
5秒前
suzy-123完成签到,获得积分10
5秒前
6秒前
10秒前
10秒前
爆米花应助大大小小采纳,获得10
10秒前
科研通AI6应助木兮采纳,获得10
10秒前
遇见完成签到,获得积分10
11秒前
科研通AI6应助杭谷波采纳,获得10
12秒前
小李完成签到,获得积分10
12秒前
13秒前
WEI发布了新的文献求助10
14秒前
16秒前
小李发布了新的文献求助10
19秒前
19秒前
风中秋天发布了新的文献求助10
19秒前
慕青应助儒雅沛蓝采纳,获得10
20秒前
20秒前
sevenLIN完成签到,获得积分20
22秒前
喵小猫发布了新的文献求助10
23秒前
25秒前
25秒前
NexusExplorer应助郑啊哈采纳,获得10
25秒前
坦率的枕头完成签到,获得积分10
26秒前
26秒前
大力三问完成签到 ,获得积分10
27秒前
科研通AI6应助杭谷波采纳,获得30
29秒前
29秒前
WY完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355925
求助须知:如何正确求助?哪些是违规求助? 4487754
关于积分的说明 13971004
捐赠科研通 4388533
什么是DOI,文献DOI怎么找? 2411135
邀请新用户注册赠送积分活动 1403662
关于科研通互助平台的介绍 1377297