已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Causal Counterfactual Graph Neural Network for Arising-from-Chair Abnormality Detection in Parkinsonians

反事实思维 异常 计算机科学 人工智能 图形 人工神经网络 计算机视觉 机器学习 物理医学与康复 心理学 理论计算机科学 医学 精神科 社会心理学
作者
Xinlu Tang,Rui Guo,Chencheng Zhang,Xiaohua Qian
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:: 103266-103266
标识
DOI:10.1016/j.media.2024.103266
摘要

The arising-from-chair task assessment is a key aspect of the evaluation of movement disorders in Parkinson's disease (PD). However, common scale-based clinical assessment methods are highly subjective and dependent on the neurologist's expertise. Alternate automated methods for arising-from-chair assessment can be established based on quantitative susceptibility mapping (QSM) images with multiple-instance learning. However, performance stability for such methods can be typically undermined by the presence of irrelevant or spuriously-relevant features that mask the intrinsic causal features. Therefore, we propose a QSM-based arising-from-chair assessment method using a causal graph-neural-network framework, where counterfactual and debiasing strategies are developed and integrated into this framework for capturing causal features. Specifically, the counterfactual strategy is proposed to suppress irrelevant features caused by background noise, by producing incorrect predictions when dropping causal parts. The debiasing strategy is proposed to suppress spuriously relevant features caused by the sampling bias and it comprises a resampling guidance scheme for selecting stable instances and a causal invariance constraint for improving stability under various interferences. The results of extensive experiments demonstrated the superiority of the proposed method in detecting arising-from-chair abnormalities. Its clinical feasibility was further confirmed by the coincidence between the selected causal features and those reported in earlier medical studies. Additionally, the proposed method was extensible for another motion task of leg agility. Overall, this study provides a potential tool for automated arising-from-chair assessment in PD patients, and also introduces causal counterfactual thinking in medical image analysis. Our source code is publicly available at https://github.com/SJTUBME-QianLab/CFGNN-PDarising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白桦林完成签到 ,获得积分20
刚刚
yaolei完成签到,获得积分10
2秒前
3秒前
eurhfe发布了新的文献求助10
7秒前
丘比特应助bamboo采纳,获得10
8秒前
悦耳的惜海完成签到,获得积分20
8秒前
8秒前
Artin完成签到,获得积分10
8秒前
8秒前
樱桃猴子完成签到,获得积分10
12秒前
赵雪杰发布了新的文献求助10
15秒前
17秒前
多边棱发布了新的文献求助20
19秒前
蛙蛙完成签到,获得积分10
22秒前
bamboo发布了新的文献求助10
23秒前
HarryYang完成签到 ,获得积分10
25秒前
25秒前
28秒前
mochi完成签到,获得积分10
29秒前
bamboo完成签到,获得积分10
31秒前
多边棱完成签到,获得积分10
32秒前
41秒前
42秒前
42秒前
strelias发布了新的文献求助10
44秒前
传奇3应助科研通管家采纳,获得10
44秒前
47秒前
动听靖完成签到 ,获得积分10
53秒前
56秒前
隐形曼青应助科研小白采纳,获得10
58秒前
13504544355完成签到 ,获得积分10
59秒前
烟消云散完成签到,获得积分10
1分钟前
1分钟前
慕青应助KETU采纳,获得10
1分钟前
桃花源的瓶起子完成签到,获得积分10
1分钟前
韦雪莲完成签到 ,获得积分10
1分钟前
搜集达人应助zyx采纳,获得30
1分钟前
明理囧完成签到 ,获得积分10
1分钟前
风筝不断线完成签到,获得积分20
1分钟前
丿夜幕灬降临丨完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146673
求助须知:如何正确求助?哪些是违规求助? 2797981
关于积分的说明 7826310
捐赠科研通 2454478
什么是DOI,文献DOI怎么找? 1306289
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522