亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A causal counterfactual graph neural network for arising-from-chair abnormality detection in parkinsonians

反事实思维 计算机科学 人工智能 图形 人工神经网络 理论(学习稳定性) 重采样 借记 机器学习 心理学 理论计算机科学 认知科学 社会心理学
作者
Xinlu Tang,Rui Guo,Chencheng Zhang,Xiaohua Qian
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103266-103266 被引量:7
标识
DOI:10.1016/j.media.2024.103266
摘要

The arising-from-chair task assessment is a key aspect of the evaluation of movement disorders in Parkinson's disease (PD). However, common scale-based clinical assessment methods are highly subjective and dependent on the neurologist's expertise. Alternate automated methods for arising-from-chair assessment can be established based on quantitative susceptibility mapping (QSM) images with multiple-instance learning. However, performance stability for such methods can be typically undermined by the presence of irrelevant or spuriously-relevant features that mask the intrinsic causal features. Therefore, we propose a QSM-based arising-from-chair assessment method using a causal graph-neural-network framework, where counterfactual and debiasing strategies are developed and integrated into this framework for capturing causal features. Specifically, the counterfactual strategy is proposed to suppress irrelevant features caused by background noise, by producing incorrect predictions when dropping causal parts. The debiasing strategy is proposed to suppress spuriously relevant features caused by the sampling bias and it comprises a resampling guidance scheme for selecting stable instances and a causal invariance constraint for improving stability under various interferences. The results of extensive experiments demonstrated the superiority of the proposed method in detecting arising-from-chair abnormalities. Its clinical feasibility was further confirmed by the coincidence between the selected causal features and those reported in earlier medical studies. Additionally, the proposed method was extensible for another motion task of leg agility. Overall, this study provides a potential tool for automated arising-from-chair assessment in PD patients, and also introduces causal counterfactual thinking in medical image analysis. Our source code is publicly available at https://github.com/SJTUBME-QianLab/CFGNN-PDarising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观大炮完成签到,获得积分10
3秒前
9秒前
13秒前
13秒前
18秒前
shinn发布了新的文献求助10
20秒前
思柔完成签到,获得积分10
22秒前
24秒前
shinn发布了新的文献求助10
24秒前
坚守完成签到 ,获得积分10
30秒前
yjr发布了新的文献求助10
30秒前
31秒前
搞怪的白云完成签到 ,获得积分10
32秒前
江江江完成签到,获得积分20
33秒前
36秒前
40秒前
瑕不掩瑜发布了新的文献求助10
40秒前
英姑应助吉吉采纳,获得10
42秒前
44秒前
莫愁完成签到 ,获得积分10
46秒前
充电宝应助shinn采纳,获得10
48秒前
49秒前
53秒前
54秒前
Owen应助发发采纳,获得30
54秒前
1分钟前
瑕不掩瑜完成签到,获得积分10
1分钟前
石榴汁的书完成签到,获得积分10
1分钟前
1分钟前
qzp完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
寻道图强举报spring求助涉嫌违规
1分钟前
shinn发布了新的文献求助10
1分钟前
1分钟前
带刺的玫瑰李博应助CGDGD采纳,获得10
1分钟前
顾矜应助宇宙超人007008采纳,获得10
1分钟前
科研通AI2S应助shinn采纳,获得10
1分钟前
1分钟前
安静严青完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112