亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A causal counterfactual graph neural network for arising-from-chair abnormality detection in parkinsonians

反事实思维 计算机科学 人工智能 图形 人工神经网络 理论(学习稳定性) 重采样 借记 机器学习 心理学 理论计算机科学 认知科学 社会心理学
作者
Xinlu Tang,Rui Guo,Chencheng Zhang,Xiaohua Qian
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103266-103266 被引量:7
标识
DOI:10.1016/j.media.2024.103266
摘要

The arising-from-chair task assessment is a key aspect of the evaluation of movement disorders in Parkinson's disease (PD). However, common scale-based clinical assessment methods are highly subjective and dependent on the neurologist's expertise. Alternate automated methods for arising-from-chair assessment can be established based on quantitative susceptibility mapping (QSM) images with multiple-instance learning. However, performance stability for such methods can be typically undermined by the presence of irrelevant or spuriously-relevant features that mask the intrinsic causal features. Therefore, we propose a QSM-based arising-from-chair assessment method using a causal graph-neural-network framework, where counterfactual and debiasing strategies are developed and integrated into this framework for capturing causal features. Specifically, the counterfactual strategy is proposed to suppress irrelevant features caused by background noise, by producing incorrect predictions when dropping causal parts. The debiasing strategy is proposed to suppress spuriously relevant features caused by the sampling bias and it comprises a resampling guidance scheme for selecting stable instances and a causal invariance constraint for improving stability under various interferences. The results of extensive experiments demonstrated the superiority of the proposed method in detecting arising-from-chair abnormalities. Its clinical feasibility was further confirmed by the coincidence between the selected causal features and those reported in earlier medical studies. Additionally, the proposed method was extensible for another motion task of leg agility. Overall, this study provides a potential tool for automated arising-from-chair assessment in PD patients, and also introduces causal counterfactual thinking in medical image analysis. Our source code is publicly available at https://github.com/SJTUBME-QianLab/CFGNN-PDarising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuliu完成签到,获得积分20
16秒前
浮游应助liuliu采纳,获得10
20秒前
gszy1975完成签到,获得积分10
25秒前
28秒前
ZYP应助科研通管家采纳,获得10
30秒前
慕青应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
50秒前
1分钟前
ClarkClarkson完成签到,获得积分10
1分钟前
1分钟前
qiaorankongling完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
火之高兴发布了新的文献求助20
1分钟前
1分钟前
Dr发布了新的文献求助10
1分钟前
Orange应助Dr采纳,获得10
1分钟前
Dr完成签到,获得积分10
1分钟前
ZYP应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ZYP应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
脑洞疼应助阿萨卡先生采纳,获得10
2分钟前
3分钟前
Cherry完成签到 ,获得积分10
3分钟前
3分钟前
zwang688完成签到,获得积分10
4分钟前
4分钟前
领导范儿应助wyx采纳,获得10
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
英姑应助科研通管家采纳,获得10
4分钟前
5分钟前
激动的xx完成签到 ,获得积分10
5分钟前
涛老三完成签到 ,获得积分10
6分钟前
6分钟前
ZYP应助科研通管家采纳,获得10
6分钟前
6分钟前
蓝胖子完成签到 ,获得积分10
6分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5455081
求助须知:如何正确求助?哪些是违规求助? 4562276
关于积分的说明 14284999
捐赠科研通 4486239
什么是DOI,文献DOI怎么找? 2457270
邀请新用户注册赠送积分活动 1447880
关于科研通互助平台的介绍 1423164