电导
场效应晶体管
非易失性存储器
调制(音乐)
MOSFET
材料科学
电子工程
记忆电阻器
晶体管
计算机科学
逻辑门
光电子学
电气工程
工程类
电压
物理
凝聚态物理
声学
作者
Won-Tae Koo,Jae-Gil Lee,Gunhee Lee,Woocheol Lee,Jungwook Woo,Dong Ik Suh,Joong-Sik Kim,Hyung Dong Lee,Se-Ho Lee,Jaeyun Yi,Seon Yong
标识
DOI:10.1109/imw59701.2024.10536944
摘要
With the advance of artificial intelligent (AI), analog computation-in-memory (A-CiM) has been extensively studied for edge-AI applications, due to their low power operations. In this study, we demonstrated the modulation of multi-level weight conductance of ferroelectric field-effect-transistor (FeFET) devices as a synaptic cell. For the precise conductance modulation of FeFET synapses, we developed the simulation framework by combining a ferroelectric switching model, FeFET threshold (Vth) model, and accurate MOSFET drain current model. Then, the poly-Si channel FeFET synapses confirmed the multi-level conductance states (≥ 16-level/cell) with ultra-low current levels and stable retention, which improves energy efficiency of inference for image classification.
科研通智能强力驱动
Strongly Powered by AbleSci AI